Новое в блогах

Как легально не пойти в армию

«Давай деньги, деньги давай!»

Тридцатые годы были временем невероятного прогресса как техники, так и науки. В Англии открыли нейтрон и позитрон, в СССР — излучение Черенкова. Однако наука стоила дорого. Грамм радия — полтора миллиона рублей. Ускоритель — десятки миллионов. Поэтому СССР в год получал целых 10-15 грамм радия с изотопами.

Игорь Курчатов у высоковольтной установки

В марте 1938 года виднейшие физики-ядерщики СССР — Иоффе, Курчатов, Алиханов и ещё четыре строки фамилий, написали письмо товарищу Молотову, главе Совнаркома СССР. Тем в письме было три: 1)а вот при царизме этим не занимались», 2)а вот на Западе уже…», поэтому 3)дайте денег».

Молотов спросил по инстанциям:Что ответить?». Шестерёнки советской государственной машины завертелись, деньги пошли.

Про то, что атомом можно жахнуть в виде бомбы, писал ещё Герберт Уэллс в 1914 году. Боевую радиоактивность придумал фантаст Александр Богданов вКрасной звезде» — 1908. И ещё примерно полсотни фантастов того времени. А в жизни деление урана открыли только в декабре 1938 года(с публикацией в январе 1939-го) Отто Ган и Фриц Штрассман в Германии.

Циклотрон,Техника-молодёжи», 1937 год

Третьего октября 1939 года в Президиум Академии наук СССР опять же пишут письмо, на этот раз — академик Вавилов. Если радий взрывом рассеять по площади, то эта площадь будетбиологически вредной». Поэтому надо бы устроить хранилища радия, и не в одном месте. Чтоб не рассеяли.

При этом ещё в феврале 1940 года академик Капица рассказывал детям, что в земных условиях ядерная энергия не будет использована. А если будет — понадобятся, возможно, тонны урана. Причём на выделение нужных изотопов придётся потратить энергии больше, чем получим.

Но всё-таки цепная реакция урана смотрелась очень привлекательно — хотя участвовало в ней меньше процента от массы природного урана. Но нужный изотоп, уран-235, получали пока микрограммами — а нужны были килограммы.

A-bomb

Для создания атомной бомбы необходимым и достаточным условием является получение делящегося материала в достаточном количестве. Работа довольно трудоемкая, но малоинтеллектуальная, лежащая ближе к горнорудной промышленности, чем к высокой науке. Основные ресурсы при создании такого оружия уходят на строительство гигантских урановых рудников и обогатительных комбинатов. Свидетельством простоты устройства является тот факт, что между получением необходимого для первой бомбы плутония и первым советским ядерным взрывом не прошло и месяца.

Напомним вкратце принцип работы такой бомбы, известный из курса школьной физики. В ее основе лежит свойство урана и некоторых трансурановых элементов, например, плутония, при распаде выделять более одного нейтрона. Эти элементы могут распадаться как самопроизвольно, так и под воздействием других нейтронов.

Высвободившийся нейтрон может покинуть радиоактивный материал, а может и столкнуться с другим атомом, вызвав очередную реакцию деления. При превышении определенной концентрации вещества (критической массе) количество новорожденных нейтронов, вызывающих дальнейшее деление атомного ядра, начинает превышать количество распадающихся ядер. Количество распадающихся атомов начинает расти лавинообразно, рождая новые нейтроны, то есть происходит цепная реакция. Для урана-235 критическая масса составляет около 50 кг, для плутония-239 — 5,6 кг. То есть шарик плутония массой чуть меньше 5,6 кг представляет собой просто теплый кусок металла, а массой чуть больше существует всего несколько наносекунд.

Наука Как спят слоны?

Собственно схема работы бомбы простая: берем две полусферы урана или плутония, каждая чуть меньше критической массы, располагаем их на расстоянии 45 см, обкладываем взрывчаткой и взрываем. Уран или плутоний спекается в кусок надкритической массы, и начинается ядерная реакция. Все. Существует другой способ запустить ядерную реакцию — обжать мощным взрывом кусок плутония: расстояние между атомами уменьшится, и реакция начнется при меньшей критической массе. На этом принципе работают все современные атомные детонаторы.

Проблемы атомной бомбы начинаются с того момента, когда мы хотим нарастить мощность взрыва. Простым увеличением делящегося материала не обойтись — как только его масса достигает критической, он детонирует. Придумывались разные хитроумные схемы, например, делать бомбу не из двух частей, а из множества, отчего бомба начинала напоминать распотрошенный апельсин, а потом одним взрывом собирать ее в один кусок, но все равно при мощности свыше 100 килотонн проблемы становились непреодолимыми.

Что такое реакция слияния ядер?

Топливом для реакции термоядерного синтеза служат изотопы водорода дейтерий или тритий. Первый отличается от обычного водорода тем, что в его ядре, кроме одного протона содержится еще и нейтрон, а в ядре трития уже два нейтрона. В природной воде один атом дейтерия приходится на 7000 атомов водорода, но из его количества. содержащегося в стакане воды, можно в результате термоядерной реакции получить такое же количество теплоты, как и при сгорании 200 л бензина. На встрече в 1946 году с политиками, отец американской водородной бомбы Эдвард Теллер подчеркнул, что дейтерий дает больше энергии на грамм веса, чем уран или плутоний, однако стоит двадцать центов за грамм в сравнении с несколькими сотнями долларов за грамм топлива для ядерного деления. Тритий в природе в свободном состоянии вообще не встречается, поэтому он гораздо дороже, чем дейтерий, с рыночной ценой в десятки тысяч долларов за грамм, однако наибольшее количество энергии высвобождается именно в реакции слияния ядер дейтерия и трития, при которой образуется ядро атома гелия и высвобождается нейтрон, уносящий избыточную энергию в 17,59 МэВ

D + T → 4 Не + n + 17,59 МэВ.

Схематически эта реакция показана на рисунке ниже.

Много это или мало? Как известно, все познается в сравнении. Так вот, энергия в 1 МэВ примерно в 2,3 миллиона раз больше, чем выделяется при сгорании 1 кг нефти. Следовательно слияние только двух ядер дейтерия и трития высвобождает столько энергии, сколько выделяется при сгорании 2,3∙10 6 ∙17,59 = 40,5∙10 6 кг нефти. А ведь речь идет только о двух атомах. Можете представить, как высоки были ставки во второй половине 40-х годов прошлого века, когда в США и СССР развернулись работы, результатом которых стала термоядерная бомба.

Навигация

Новые американские зенитные самоходные ракетно-пушечные комплексы M-SHORAD в Европе

Как сообщила 23 апреля 2021 года армия США, дислоцированный в Ансбахе (Германия) 5-й дивизион 4-го зенитно-артиллерийского полка (5th Battalion, 4th Air Defense Artillery Regiment — 5-4 ADA), входящий в состав 10-го командования противовоздушной и противоракетной обороны армии США в Европе, стал первой частью, получившей новые американские зенитные самоходные ракетно-пушечные комплексы M-SHORAD (Mobile/Maneuver Short Range Air Defense), выполненные на базе колесного бронетранспортера Stryker A1 (8×8). Данный комплекс будет фактически проходить в 5-4 ADA войсковые испытания.

Атомное оружие

АТОМНОЕ ОРУЖИЕ, устройство, получающее огромную взрывную мощность от реакций ДЕЛЕНИЯ АТОМНОГО ЯДРА и ЯДЕРНОГО СИНТЕЗА. Первое ядерное оружие было применено Соединенными Штатами против японских городов Хиросимы и Нагасаки в августе 1945 г. Эти атомные бомбы состояли из двух стабильных доктритических масс УРАНА и ПЛУТОНИЯ, которые при сильном сталкивании вызвали превышение КРИТИЧЕСКОЙ МАССЫ, тем самым провоцируя бесконтрольную ЦЕПНУЮ РЕАКЦИЮ деления атомных ядер. При таких взрывах высвобождается огромное количество энергии и губительной радиации: взрывная мощность может равняться мощности 200 000 тонн тринитротолуола. Гораздо более мощная водородная бомба (термоядерная бомба), впервые испытанная в 1952 г., состоит из атомной бомбы, которая во время взрыва создает температуру, достаточно высокую для того, чтобы вызвать ядерный синтез в близлежащем твердом слое, обычно — в детеррите лития. Взрывная мощность может равняться мощности нескольких миллионов тонн (мегатонн) тринитротолуола. Площадь поражения, вызванного такими бомбами, достигает больших размеров: 15 мегатонная бомба взорвет все горящие вещества в пределах 20 км. Третий тип ядерного оружия, нейтронная бомба, является небольшой водородной бомбой, называемой также оружием повышенной радиации. Она вызывает слабый взрыв, который, однако, сопровождается интенсивным выбросом высокоскоростных НЕЙТРОНОВ. Слабость взрыв означает то, что здания повреждаются не сильно. Нейтроны же вызывают серьезную лучевую болезнь у людей, находящихся в пределах определенного радиуса от места взрыва, и убивают всех пораженных в течении недели.

Вначале взрыв атомной бомбы (А) образует огненный шар (1) с температурой и миллионы градусов по Цельсию и испускает радиационное излучение (?) Через несколько минут (В) шар увеличивается в обьеме и создав!ударную волну с высоким давлением (3). Огненный шар поднимается (С), всасывая пыль и обломки, и образует грибовидное облако (D), По мере увеличения в обьеме огненный шар создает мощное конвекционное течение (4), выделяя горячее излучение (5) и образуя облако (6), При взрыве 15 мегатонной бомбы разрушение от взрывной волны являются полным (7) в радиусе 8 км, серьезными (8) в радиусе 15км и заметными (Я) в радиусе 30 км Даже на расстоянии 20 км (10) взрываются все легковоспламеняющиеся вещества, В течение двух дней после взрыва бомбы на расстоянии 300 км от взрыва продолжается выпадение осадков с радиоактивной дозой в 300 рентген Прилагаемая фотография показывает, как взрыв крупного ядерного оружия на земле создает огромное грибовидное облако радиоактивной пыли и обломков, которое может достигать высоты нескольких километров. Опасная пыль, находящаяся в воздухе, свободно переносится затем преобладающими ветрами в любом направлении Опустошение покрывает огромную территорию.

Последствия обогащения

Для получения ядерной энергии путем деления особый интерес представляют ядра изотопов урана с атомным весом 233 и 235 (233U и 235U) и плутония — 239 (239Pu), делящиеся под воздействием нейтронов. Связь частиц во всех ядрах обусловлена сильным взаимодействием, особо эффективным на малых расстояниях. В крупных ядрах тяжелых элементов эта связь слабее, поскольку электростатические силы отталкивания между протонами как бы «разрыхляют» ядро. Распад ядра тяжелого элемента под действием нейтрона на два быстро летящих осколка сопровождается высвобождением большого количества энергии, испусканием гамма-квантов и нейтронов — в среднем 2,46 нейтрона на одно распавшееся урановое ядро и 3,0 — на одно плутониевое. Благодаря тому что при распаде ядер число нейтронов резко возрастает, реакция деления может мгновенно охватить все ядерное горючее. Так происходит при достижении «критической массы», когда начинается цепная реакция деления, приводящая к атомному взрыву.

1 — корпус

2 — взрывной механизм

3 — обычное взрывчатое вещество

4 — электродетонатор

5 — нейтронный отражатель

6 — ядерное горючее (235U)

7 — источник нейтронов

8 — процесс обжатия ядерного горючего направленным внутрь взрывом

В зависимости от способа получения критической массы различают атомные боеприпасы пушечного и имплозивного типа. В простом боеприпасе пушечного типа две массы 235U, каждая из которых меньше критической, соединяются с помощью заряда обычного взрывчатого вещества (ВВ) путем выстрела из своеобразной внутренней пушки. Ядерное горючее можно разделить и на большее число частей, которые будут соединяться взрывом окружающего их ВВ. Такая схема сложнее, но позволяет достигать больших мощностей заряда.

В боеприпасе имплозивного типа уран 235U или плутоний 239Pu обжимается взрывом расположенного вокруг них обычного взрывчатого вещества. Под действием взрывной волны плотность урана или плутония резко повышается и «надкритическая масса» достигается при меньшем количестве делящегося материала. Для более эффективного протекания цепной реакции горючее в боеприпасах обоих типов окружают нейтронным отражателем, например на основе бериллия, а для инициирования реакции в центре заряда располагают источник нейтронов.

Изотопа 235U, необходимого для создания ядерного заряда, в природном уране содержится всего 0,7%, остальное — стабильный изотоп 238U. Для получения достаточного количества разделяющегося материала производят обогащение природного урана, и это было одной из самых сложных в техническом плане задач при создании атомной бомбы. Плутоний получают искусственно — он накапливается в промышленных ядерных реакторах, за счет превращения 238U в 239Pu под действием потока нейтронов.

Клуб взаимного устрашения

Взрыв советской ядерной бомбы 29 августа 1949 года сообщил всем об окончании американской ядерной монополии. Но ядерная гонка только разворачивалась, к ней очень скоро присоединились новые участники.

3 октября 1952 года взрывом собственного заряда заявила о вступлении в «ядерный клуб» Великобритания, 13 февраля 1960 года — Франция, а 16 октября 1964 года — Китай.

Политическое воздействие ядерного оружия как средства взаимного шантажа хорошо известно. Угроза быстрого нанесения противнику мощного ответного ядерного удара была и остается главным сдерживающим фактором, вынуждающим агрессора искать другие пути ведения военных действий

Это проявилось и в специфическом характере третьей мировой войны, осторожно именовавшейся «холодной»

Официальная «ядерная стратегия» хорошо отражала и оценку общей военной мощи. Так, если вполне уверенное в своей силе государство СССР в 1982 году объявило о «неприменении ядерного оружия первым», то ельцинская Россия вынуждена была объявить о возможности применения ядерного оружия даже против «неядерного» противника. «Ракетно-ядерный щит» и сегодня остался главной гарантией от внешней опасности и одной из основных опор самостоятельной политики. США в 2003 году, когда агрессия против Ирака была уже решенным делом, от болтовни о «несмертельном» оружии перешли к угрозе «возможного использования тактического ядерного оружия». Другой пример. Уже в первые годы XXI века «ядерный клуб» пополнили Индия и Пакистан. И почти сразу последовало резкое обострение противостояния на их границе.

Эксперты МАГАТЭ и пресса давно утверждают, что Израиль «в состоянии» произвести несколько десятков ядерных боеприпасов. Израильтяне же предпочитают загадочно улыбаться — сама возможность наличия ядерного оружия остается мощным средством давления даже в региональных конфликтах.

Цепные ядерные реакции

Одного удара нейтрона достаточно для расщепления менее стабильного атома U-235, создания атомов меньших элементов (чаще всего бария и криптона) и высвобождения тепла и гамма-излучения (самой мощной и смертоносной формы радиоактивности).

Эта цепная реакция происходит, когда “запасные” нейтроны из этого атома вылетают с достаточной силой, чтобы расщепить другие атомы U-235, с которыми они соприкасаются. В теории необходимо расщепить только один атом U-235, который будет выпускать нейтроны, которые будут расщеплять другие атомы, которые будут выпускать нейтроны … и так далее. Эта прогрессия не арифметическая; он геометрический и происходит в миллионную долю секунды.

Минимальная сумма для начала цепной реакции, как описано выше, называется сверхкритической массы. Для чисто U-235, 110 фунтов (50 килограмм). Однако Уран никогда не бывает достаточно чистым, поэтому в действительности потребуется больше, например, U-235, U-238 и плутоний.

Вес, длина и способ запуска

Данная характеристика существенно влияет на поражающий фактор. Ядерные бомбы и ракеты, как правило, очень громоздкие и весят очень много. Для их транспортировки и запуска используют специальные военные машины. На вооружении российской армии их несколько. Самым известным считается “Искандер-М”.По способу запуска ядерное оружие также делится на несколько типов:

  1. Бомбы. Их необходимо сбрасывать непосредственно с авиации.
  2. Ракеты, в том числе и баллистические. Они имеют в своем строении определенный запас топлива, который позволяет летать им очень далеко и долго. В свою очередь они делятся на два класса:

    • Запускаемые с техники, которые может быстро передвигаться и менять место своей дислокации. Однако, для полной боеготовности к запуску таким ракетам требуется время с продолжительностью около 5 минут.
    • Базирующиеся в шахтах. Данный тип ракет уникален тем, что никто, кроме президента и министра обороны не знает их расположение, а также число. Для их развертывания требуется приблизительно столько же времени, но ракеты такого типа могут облететь весь земной шар несколько раз.

Рассмотри вес и длину ядерных ракет, имеющихся на вооружении армии России:

  • Тополь-М. Признана самой мобильной ядерной установкой. Производство осуществляется с 1994 года. Вес составляет 46,5 тонн. Длина — 17,5 метра. Является основой ядерного щита России.
  • Ярс РС-24. Самая защищенная ракета. Масса около 47 тонн. Длина приблизительно 23 метра.
  • Р-36М Сатана. Признана самой тяжелой ядерной ракетой в нашей стране. Ее вес составляет 211 тонн. Длина — 34,3 метра.
  • РС-28 Сармат. Длина составляет 30-35 метров. Вес более 200 тонн.

Обладая такими существенными характеристиками, каждая ракета способна уничтожить любую страну мира.
Рис. 5. РС-28 Сармат

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector