Куда летит наша солнечная система. движение солнечной системы в галактике млечный путь

§6.2. Пекулярные скорости галактик

Важным проявлением крупномасштабной структуры Вселенной являются пекулярные
скорости галактик. Как уже было сказано, пекулярная скорость — это скорость
относительно космической системы отсчета. Наличие пекулярной скорости
сказывается в отклонении движения галактик от закона Хаббла.

Наша звездная система также обладает пекулярной скоростью.
Эта величина была измерена следующим образом. Еще в 70-е годы было открыта
дипольная анизотропия
реликтового излучения — в направлении созвездия Льва температура этого
излучения на 0.1% выше, чем в среднем, а в противоположном направлении — на
столько же ниже. Однако эта неоднородность характеризует не сам микроволновой
фон, а наше движение относительно него. Дело в том, что, согласно эффекту
Доплера, при сближении приемника излучения с источником длина волны уменьшается
(наблюдается синее смещение), а при удалении — увеличивается (красное смещение).
Но длина волны связана с температурой излучения по закону Вина. Поэтому
дипольная анизотропия реликтового излучения говорит о том, что Солнце вместе с
Землей и планетами движется относительно этого излучения в сторону созвездия
Льва. Скорость этого движения составляет примерно
u=370 кмс.
Поскольку реликтовое излучение является излучением Вселенной в целом, можно
сказать, что эти 370 кмс —
это наша скорость по отношению ко Вселенной в целом.

С другой стороны, давно известно, что Солнце вращается
вокруг центра Галактики со скоростью
vrot~220-230 кмс.
Вектор этой скорости направлен в сторону созвездия Лебедя.
Поскольку направления векторов u и
vrot различаются,
мы приходим к выводу, что наша Галактика как целое движется относительно
реликтового излучения со скоростью примерно
vpec~620 кмс.

Пекулярные скорости галактик вызываются притяжением
расположенных рядом крупных систем галактик. Так, пекулярная скорость нашей
Галактики вызвана совокупным притяжением ближайшего к нам крупного скопления
галактик, скопления Девы, и огромного сгущения галактик, названного
Великий
Аттрактор, от английского слова «attract» — притягивать (рис. 6.2.1). Оно находится на
пересечении нескольких сверхскоплений галактик. Средняя плотность вещества в
районе Великого Аттрактора ненамного больше средней плотности Вселенной, но за
счет его гигантских размеров его масса оказывается настолько велика, что не
только наша звездная система,
но и другие галактики и их скопления поблизости (в том числе скопление Девы,
ряд близких сверхскоплений) имеют пекулярные скорости, направленные на него,
формируя огромный поток галактик. Поскольку галактики, входящие в
состав Великого Аттрактора, скрыты межзвездной пылью, входящей в состав
Млечного Пути,
картографирование
Аттрактора удалось выполнить только в последние годы с помощью
радиотелескопов. Возможно, помимо Великого Аттрактора, свой вклад в наличие
пекулярной скорости вносит притяжение и других систем галактик.

Рис. 6.2.1. Иерархия движений, в которых принимает
участие наша планета: вращение Земли вокруг Солнца; вращение вместе с
Солнцем вокруг центра нашей Галактики; движение относительно центра Местной
группы галактик вместе со всей Галактикой под действием гравитационного
притяжения туманности Андромеды (галактики М31); движение к скоплению
галактик в созвездии Девы и движение к Великому Аттрактору. Суперпозиция
последних двух скоростей и дает скорость движения Млечного Пути
относительно космической системы отсчета, измеряемую по величине
дипольной анизотропии реликтового излучения.

Изучение сверхновых типа Ia на космологических расстояниях
показало, что в очень больших масштабах отклонения от закона Хаббла
сравнительно невелики, т.е. потоки галактик, аналогичные падению нашей и
других расположенных рядом систем на Великий Аттрактор — это местные явления,
существование которых не противоречит справедливости космологического принципа
в больших масштабах.

Перемещение в рамках галактики.

Движение Солнечной системы в галактике было открыто англо-немецким астрономом Уильямом Гершелем. Он определил, что ход Солнца направлен к звезде Маасим, или Лямбде в Геркулесе (со скоростью, равной 20 км/с). Современные расчеты всего на десять градусов отличаются от расчетов Уильяма Гершеля. Это пекулярное, или общее движение. Также происходит движение солнечной системы в галактике, которое астрономы наименовали переносным. Солнце, вместе с ближайшими звездами, которые обращаются вокруг галактического центра, устремлено к созвездию Лебедя (со скоростью, равной 200 – 250 км/с)

Звезды, пыль и газ вращаются с разной стремительностью. Это зависит от их местоположения и удаленности от центра. Типичным для спиральных скоплений является то, что и светила, расположенные ближе к ядру, и более удаленные объекты вращаются с примерно одинаковой орбитальной скоростью. Но в Млечном Пути объекты, чьи орбиты приближены к центру вращаются медленнее, чем те, что удалены. Солнце вращается по орбите, имеющей форму почти правильной окружности. Скорость составляет 828000 километров в час по данным, опубликованным в 2009 году. Полный виток вокруг центра диска совершается примерно за 230 миллионов лет, что является галактическим годом.

Вдобавок к орбитальному вращению, происходят также колебания в вертикальном направлении в плоскости Млечного Пути. Пересечение этой плоскости совершается один раз в 30 миллионов лет. Это означает, что Солнце меняет местоположение из северной в южную часть Млечного Пути и наоборот. Определено также, что в данный момент Солнце располагается в северной полусфере (20-25 парсек от плоскости диска). В настоящий момент совершается прохождение Местного межзвездного облака (ММО). Система вошла в него примерно 50 — 150 тысяч лет тому назад, и по подсчетам ученых выйдет из его пределов через 20 тысяч лет.

Астрофизические параметры Млечного Пути

Для того чтобы представить, как выглядит Млечный Путь в масштабах космоса, достаточно взглянуть на саму Вселенную и сравнить отдельные ее части. Наша галактика входит в подгруппу, которая в свою очередь является частью Местной группы, более крупного образования. Здесь наш космический мегаполис соседствует с галактиками Андромеда и Треугольника. Окружение троице составляют более 40 мелких галактик. Местная группа уже входит в состав еще более крупного образования и является частью сверхскопления Девы. Некоторые утверждают, что это только приблизительные предположения о том, где находится наша галактика. Масштабы образований настолько огромны, что все это представить практически невозможно. Сегодня мы знаем расстояние до ближайших соседствующих галактик. Другие объекты глубокого космоса находятся за пределами видимости. Только теоретически и математически допускается их существование.

Что касается обозримого мира, то сегодня имеется достаточно информации о том, как выглядит наша галактика. Существующая модель, а вместе с ней и карта Млечного Пути, составлена на основании математических расчетов, данных полученных в результате астрофизических наблюдений. Каждое космическое тело или фрагмент галактики занимает свое место. Это, как и во Вселенной, только в меньшем масштабе. Интересны астрофизические параметры нашего космического мегаполиса, а они впечатляют.

Наша галактика спирального типа с перемычкой, которую на звездных картах обозначают индексом SBbc. Диаметр галактического диска Млечного Пути составляет порядка 50-90 тысяч световых лет или 30 тысяч парсек. Для сравнения радиус галактики Андромеды равен 110 тыс. световых лет в масштабах Вселенной. Можно только представить насколько больше Млечного Пути наша соседка. Размеры же ближайших к Млечному Пути карликовых галактик в десятки раз меньше параметров нашей галактики. Магеллановы облака имеют диаметр всего 7-10 тыс. световых лет. В этом огромном звездном круговороте насчитывается порядка 200-400 миллиардов звезд. Эти звезды собраны в скопления и туманности. Значительная ее часть – это рукава Млечного Пути, в одном из которых находится наша солнечная система.

Все остальное — это темная материя, облака космического газа и пузыри, которые заполняют межзвездное пространство. Чем ближе к центру галактики, тем больше звезд, тем теснее становится космическое пространство. Наше Солнце располагается в области космоса, состоящем из более мелких космических объектов, находящихся на значительном расстоянии друг от друга.

Масса Млечного Пути составляет 6х1042 кг, что в триллионы раз больше массы нашего Солнца. Практически все звезды, населяющие нашу звездную страну, расположены в плоскости одного диска, толщина которого составляет по разным оценкам 1000 световых лет. Узнать точную массу нашей галактики не представляется возможным, так как большая часть видимого спектра звезд, скрыта от нас рукавами Млечного Пути. К тому же неизвестна масса темной материи, которая занимает огромные межзвездные пространства.

Центр галактики имеет диаметр 1000 парсек и состоит из ядра с интересной последовательностью. Центр ядра имеет форму выпуклости, в которой сосредоточены крупнейшие звезды и скопление раскаленных газов. Именно эта область выделяет огромное количество энергии, которая по совокупности больше, чем излучают миллиарды звезд, входящие в состав галактики. Эта часть ядра самая активная и самая яркая часть галактики. По краям ядра имеется перемычка, которая является началом рукавов нашей галактики. Такой мостик возникает в результате колоссальной силы гравитации, вызванной стремительной скоростью вращения самой галактики.

Рассматривая центральную часть галактики, парадоксальным выглядит следующий факт. Ученые долгое время не могли понять, что находится в центре Млечного Пути. Оказывается, в самом центре звездной страны под названием Млечный Путь устроилась сверхмассивная черная дыра, диаметр которой составляет порядка 140 км. Именно туда и уходит большая часть энергии, выделяемой ядром галактики, именно в этой бездонной бездне растворяются и умирают звезды. Присутствие черной дыры в центре Млечного Пути свидетельствует о том, что все процессы образования во Вселенной, должны когда-то закончиться. Материя превратится в антиматерию и все повторится снова. Как будет себя вести это чудовище через миллионы и миллиарды лет, черная бездна молчит, что указывает на то, что процессы поглощения материи только набирают силу.

Примечания[ | ]

  1. Врашение галактики (неопр.) .
  2. L. Volders. Neutral hydrogen in M 33 and M 101 (англ.) // Astronomy and Astrophysics : journal. — Vol. 14. — P. 323—334.
  3. A. Bosma, «The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types», PhD Thesis, Rijksuniversiteit Groningen, 1978, available online at the Nasa Extragalactic Database
  4. W. J. G. de Blok, S. McGaugh. The dark and visible matter content of low surface brightness disc galaxies (англ.) // Monthly Notices of the Royal Astronomical Society : journal. — Oxford University Press, 1997. — Vol. 290. — P. 533—552. available online at the Smithsonian/NASA Astrophysics Data System
  5. M. A. Zwaan, J. M. van der Hulst, W. J. G. de Blok, S. McGaugh. The Tully-Fisher relation for low surface brightness galaxies: implications for galaxy evolution (англ.) // Monthly Notices of the Royal Astronomical Society : journal. — Oxford University Press, 1995. — Vol. 273. — P. L35—L38. available online at the Smithsonian/NASA Astrophysics Data System
  6. W. J. G. de Blok, A. Bosma. High-resolution rotation curves of low surface brightness galaxies (англ.) // Astronomy and Astrophysics : journal. — 2002. — Vol. 385. — P. 816—846. available online at the Smithsonian/NASA Astrophysics Data System

Что такое галактическая стена?

Согласно статье, опубликованной в The New York Times, международная группа астрономов во главе с Даниэлем Помаредом из университета Париж-Сакле и Р. Брентом Талли из Гавайского университета опубликовала результаты нового исследования в журнале Astrophysical Journal. В работе присутствуют карты и диаграммы особенностей нашей локальной Вселенной, а также видео-экскурсия по стене Южного полюса.

Эта работа – последняя часть продолжающейся миссии, главной целью которой является обнаружение нашего места во Вселенной. В конце-концов мы должны знать своих галактических соседей и бесконечных пустот в лицо, ведь именно благодаря им можно понять, куда мы движемся. Открытие особенно примечательно, так как обнаруженное гигантское звездное скопление все это время оставалось незамеченным. Но что именно удалось узнать ученым?

Как оказалось, новая стена объединяет множество других космографических особенностей: расположение галактик или их отсутствие, о чем исследователи узнали за последние несколько десятилетий. Исследование основывается на измерениях расстояний от 18 000 галактик до 600 миллионов световых лет. Для сравнения – самые отдаленные объекты, которые мы можем увидеть — это квазары и галактики, образовавшиеся вскоре после Большого взрыва, — находятся от нас на расстоянии около 13 миллиардов световых лет.

Компьютерная модель стены Южного полюса, с более плотными областями материи, отображенными красным цветом. Вся показанная область занимает около 1,3 миллиарда световых лет; галактика Млечный Путь, едва достигающая 100 000 световых лет в поперечнике, расположена в центре изображения

В расширяющейся Вселенной далекие галактики удаляются от нас, прямо как точки на надувающемся воздушном шаре; чем дальше они находятся, тем быстрее они удаляются от нас, согласно соотношению, называемому законом Хаббла. Это движение от Земли заставляет свет от галактик смещаться к более длинным, более красным длинам волн и более низким частотам, словно удаляющиеся сирены скорой помощи. Измеряя расстояния между галактиками исследователи смогли отличить движение, вызванное космическим расширением, от движения, вызванного гравитационными неравномерностями.

В результате астрономы обнаружили, что галактики между Землей и стеной Южного полюса удаляются от нас немного быстрее, чем должны были. А галактики за стеной движутся медленнее, чем следовало бы, сдерживаемые гравитационным сопротивлением стены. И все же, в космологическом отношении, стена Южного полюса находится поблизости. Можно удивиться тому, как такое большое и не столь отдаленное сооружение оставалось незамеченным все эти годы, но в расширяющейся Вселенной всегда есть на что посмотреть.

Интересные факты

Кроме Обитаемой зоны, в Млечном Пути имеется и Необитаемая. В ней изначально не было процессов, сделавших появление жизни на планетах возможным. Крупных звезд, остатки которых после взрывов стали «кирпичиками» для рождения углерода, кислорода, железа, кальция и других элементов, там взорвалось гораздо меньше. Потому содержание нужных для создания и поддержания жизни веществ здесь минимально.

Потенциально не подходят для жизни из-за смертельного излучения еще одни жители Млечного Пути — звезды О-типа. Это горячие гиганты, излучающие громадные дозы ультрафиолетовых волн, убивающие в радиусе нескольких десятков световых лет от себя не только все живое, но и планеты до того, как их формирование закончится. Излучаемая О-звездами энергия не только «сдирает материю» с небесных тел, но и вырывает их с орбит.

У нашей галактики немало интересных, а иногда и странных соседей:

Глизе-581 — красный карлик, расположенный в 20,4 световых годах от Земли. Credit: NASA.

  1. Глизе-710, звезда — оранжевый карлик, более массивная, чем Солнце (на 60%), находящаяся от Земли на расстоянии всего 60-65 световых лет и постоянно приближающаяся.
  2. Облако Оорта — так называют обволакивающую нас по периметру громадную зону, полную ледяных глыб и валунов, являющуюся источником попадающих в Солнечную систему комет, астероидов и других мелких небесных тел.
  3. Альфа Центавра — ближайшая к Земле звезда. Она находится на расстоянии всего 4 световых года и состоит из 3 вращающихся друг вокруг друга небесных тел.
  4. Коричневые карлики — холодные и темные, излучающие мало света и потому сложные для наблюдения. Ближайшие из них находятся на расстоянии 9-40 световых лет, и некоторые такие прохладные, что до них даже можно дотронуться рукой.
  5. Экзопланеты, заметить которые сложно — ведь они не излучают света. Ближайшая из них находится в 10 световых годах отсюда и вращается вокруг одной из звезд созвездия Эридана. По свойствам эта планета напоминает Юпитер — является газовым гигантом.

Экзопланеты, находящиеся в непосредственной близости от Солнечной системы, называются трансплутоновыми, а после 2006 г., когда Плутон официально перестал считаться планетой, транснептуновыми. Во второй половине активно шли поиски Планеты Икс.

Ученые предсказывали, что этот объект похож габаритами на Юпитер и имеет ретроградную (обратно направленную) орбиту. Из экзопланет за пределами нашей системой в обратном направлении движется Wasp-17b. Она открыта в 2009 г. и находится совсем близко — на расстоянии около 1000 световых лет.

А еще в Млечном Пути встречаются «бездомные» планеты, открытые в начале 2010-х гг. Они начали существование как другие подобные небесные тела, но по какой-то причине сместились с орбиты и больше не вращаются вокруг звезды-родителя, хаотично блуждая по галактике.

https://youtube.com/watch?v=bJO_axU1Ev8

Квадранты

В звёздной картографии под квадрантом подразумевается обширное пространство космоса в рамках галактики. Границы квадрантов определяются осями, проходящими через центр галактики и пересекающимися перпендикулярно друг относительно друга. Таким образом, галактика Млечный путь состоит из четырёх приблизительно равных квадрантов, которые называются Альфа, Бета, Гамма и Дельта-квадрантами. Звёздный Флот Федерации и его ближайшие соседи Клингонская и Ромуланская империи располагаются в Альфа и Бета-квадрантах. Коллектив боргов находится в Дельта-квадранте. Доминион — в Гамма-квадранте.

Альфа-квадрант

Альфа-квадрант — это собирательное название одной четвёртой галактики Млечный Путь. Его границы определены меридианом, проходящим через галактическое ядро вблизи Солнечной системы и вторым меридианом, перпендикулярным первому. В квадрант входят Рукав Ориона, Рукав Персея и Рукав Стрельца.

Межзвёздная политика в Альфа-квадранте в XXIV веке в основном определялась Звёздном Флоте Федерации совместно с другими силами региона, включавшими Клингонскую и Ромуланскую империи, Кардассианский союз, Тзенкети, Таларианскую республику и Альянс ференгов, которые взаимодействовали между собой в основном мирно. Члены Толианского сообщества , Конфедерации бринов и Зинди держались достаточно обособленно от остальных обитателей Альфа-квадранта.

Стоит отметить, что к этому времени достаточно изучено только 25 процентов Альфа-квадранта, но и они содержат примеры потрясающей красоты и научного чуда, как, например, Звёздное скопление Арголис, Туманность Арахнид и Пустоши.

Одним из самых интересных астрономических объектов является Баджорская червоточина, соединяющая Баджорский сектор в Альфа-квадранте с системой Идран, расположенной в отдалённой части Гамма-квадранта, неподалёку от пространства Доминиона. Использование этой червоточины обитателями Альфа-квадранта для исследований и торговли вызвало усиление враждебности со стороны Доминиона, что вылилось в Доминионскую войну.

Бета-квадрант

Бета-квадрант — это собирательное название одной четвёртой галактики Млечный Путь. Один из квадрантов нашей Галактики, расположенный в направлении созвездия Киля перпендикулярно α Квадранту. В Бета-Квадранте располагаются владения Клингонской звёздной империи, а также Ромуланской звёздной империи, некоторая часть Квадранта принадлежит и Федерации. Федерации плохо известна картография Бета-Квадранта — в основном по причине перекрывания дальнейшего доступа к остальной части Квадранта Клингонской и Ромуланской империями: известно, что в 2566 году клингоны присоединились к Федерации — вероятно, тогда началось более активное освоение Квадранта, потому как барьеров больше не стало. В 2293 году крейсер типа «Эксельсиор» под командованием капитана Салу закончил трёхлетний исследовательский рейс в Бета-Квадранте, который включал каталогизирование газообразных аномалий Квадранта. 70 лет спустя «Олимп» под командованием Лайзы Кузак семь лет исследовал Бета-Квадрант. С большой долей вероятности можно предположить, что большинство миссий NX-01 имели место в Бета-Квадранте и лишь часть — в α Квадранте.

Гамма-квадрант

Гамма-квадрант — это собирательное название одной четвёртой галактики Млечный Путь. Его границы определённы меридианом, проходящим через галактическое ядро вблизи Солнечной системы и вторым меридианом, перпендикулярным первому. Ближайшая к Земле граница Гамма-квадранта расположена примерно в 30 000 световых годах от неё. Стабильная Баджорская червоточина соединяет Баджорский сектор в Альфа-квадранте с системой Идран, расположенной в Гамма-квадранте.

Дельта-квадрант

Дельта-квадрант — это собирательное название одной четвёртой галактики Млечный Путь. Его границы определены меридианом, проходящим через галактическое ядро вблизи Солнечной системы, и вторым меридианом, перпендикулярным первому. Ближайшая точка до Земли расположена примерно в 30 000 световых годах от Земли. В квадрант входит часть Рукава Центавра, а также шаровые звёздные скопления M14 (NGC 6402) и M80 (NGC 6093).

Впервые люди были заселены в Дельта-квадрант расой под названием бриори примерно в 1937 году для использования в качестве рабов. Но рабы восстали, а их потомки основали новую цивилизацию на планете L-класса. Впервые люди самостоятельно посетили этот сектор космоса в звёздную дату 32629.4, когда звездолёту «Рэйвен» удалось проследовать за кораблём боргов через трансварповый канал. Первая миссия Звёздного флота в Дельта-квадранте совпала с инспекцией Барзанской червоточины в 2366 году.

Особенности Солнечного вращения

Звезда, в основном состоящая из водорода с гелием, не имеет единой плотности, присущей твердым телам. Поэтому в отличие от твердых планет, к примеру, таких как Земля, не имеет единой планетарной скорости обращения. В экваториальной зоне составляющие звезду газы вращаются относительно быстро. На полный оборот уходит примерно 25 (24,74) земных суток. У полюсов скорость движения вещества замедляется и составляет около 35 суток. В разных точках между ними скорость составляет 26-28 дней.

Предполагается, что Солнечное ядро оборачивается вокруг оси еще быстрее. Его скорость выше, чем у наружных слоев в четыре раза. Согласно этой схемы, скорость вращения задает именно быстро крутящееся ядро. Чуть медленнее обращаются примыкающие к нему внутренние зоны, лучистого переноса и конвективная. Еще медленнее движутся слои Солнечной атмосферы, состоящей из излучающей свет, выглядящей как сияющая поверхность звезды фотосферы, придающей светилу красноватый оттенок хромосферы и выбрасывающей протуберанцы короны.

Сила природы

Вообще «сад камней» — это японское название искусственного ландшафта, в котором ключевую роль играют камни, расставленные по строгим правилам. «Карэсансуй» (сухой пейзаж) в Японии культивируется с 14-го века, и появился он не просто так. Считалось, что в местах с большим скоплением камней обитают боги, вследствие этого и самим камням стали придавать божественное значение. Конечно, сейчас японцы используют сады камней как место для медитации, где удобно предаваться философским размышлениям.

А философия здесь вот при чём. Хаотичное, на первый взгляд, расположение камней, на самом деле строго подчинено определённым законам. Во-первых, должна соблюдаться асимметрия и разность размеров камней. В саду есть определённые точки наблюдения – в зависимости от времени, когда вы собираетесь созерцать устройство своего микромира. И главная хитрость – с любой точки наблюдения всегда должен быть один камень, который… не виден.

Самый известный в Японии сад камней находится в Киото – древнейшей столице страны самураев, в храме Рёандзи. Это пристанище буддийских монахов. А у нас в Бурятии «сад камней» появился без усилий человека – его автором является сама Природа.

В юго-западной части Баргузинской долины, в 15 километрах от посёлка Суво, где река Ина выходит из Икатского хребта, расположено это место площадью более 10 квадратных километров. Значительно больше, чем любой японский сад камней – в той же пропорции, как японский бонсаи меньше бурятского кедра. Здесь из ровной земли выступают крупные глыбы камня, достигающего 4-5 метров в поперечнике, а в глубину эти валуны уходят до 10 метров!

Удаление этих мегалитов от горного хребта достигает 5 километров и более. Какая же сила могла разметать эти огромные камни на такие расстояния? То, что это сделал не человек, стало ясно из недавней истории: для гидромелиоративных целей здесь был прорыт 3-километровый канал. И в русле канала там и сям лежат огромные глыбы, уходящие на глубину до 10 метров. С ними бились, конечно, но безуспешно. В результате все работы на канале были остановлены.

Учёные выдвигали разные версии происхождения Ининского сада камней. Многие считают эти глыбы мореными валунами, то есть ледниковыми отложениями. Возраст учёными называется разный (Э. И. Муравский считает, что им 40-50 тысяч лет, а В. В. Ламакин — более 100 тысяч лет!), в зависимости от какого оледенения отсчитывать.

По предположениям геологов, в древности Баргузинская котловина представляла собой пресноводное неглубокое озеро, которое было отделено от Байкала неширокой и невысокой горной перемычкой, соединяющей Баргузинский и Икатский хребты. При повышении уровня воды образовался сток, превратившийся в русло реки, которая все глубже и глубже врезалась в твёрдые кристаллические породы. Известно, как ливневые потоки воды весной или после сильного дождя размывают крутые склоны, оставляя глубокие борозды балок и оврагов. Со временем уровень воды упал, и площадь озера из-за обилия взвешенного материала, приносимого в него реками, уменьшилась. В результате озеро исчезло, а на его месте осталась широкая долина с валунами, которые отнесли позже к памятникам природы.

А вот недавно доктор геолого-минералогических наук Г.Ф. Уфимцев предложил очень оригинальную идею, никак не связанную с оледенениями. По его мнению, Ининский сад камней образовался в результате сравнительно недавнего, имевшего катастрофический характер гигантского выброса крупно-глыбового материала.

По его наблюдениям, ледниковая деятельность на Икатском хребте проявилась только лишь на небольшой площади в верховьях рек Турокчи и Богунды, в средней же части этих рек следов оледенения не наблюдается. Таким образом, по мнению ученого, произошёл прорыв плотины подпрудного озера в течении реки Ины и её притоков. В результате прорыва с верховья Ины селем или грунтовой лавиной в Баргузинскую долину был выброшен большой объем глыбового материала. В пользу этой версии говорит факт сильного разрушения коренных бортов долины реки Ины на месте слияния с Турокчей, что может свидетельствовать о снесении селем большого объема горных пород.

На этом же участке реки Ины Уфимцевым отмечены два крупных «амфитеатра» (напоминают огромную воронку) размерами 2,0 на 1,3 километра и 1,2 на 0,8 километра, которые, вероятно, могли быть ложем крупных подпрудных озер. Прорыв плотины и спуск воды, по мнению Уфимцева, мог произойти в результате проявлений сейсмических процессов, поскольку оба склоновых «амфитеатра» приурочены к зоне молодого разлома с выходами термальных вод.

Дальнейшие исследования[ | ]

Являясь важным элементом убеждения людей в существовании «тёмной материи», новейший труд о кривых вращения галактик также бросает ей один из самых больших вызовов. Дальнейшее исследование кривых вращения галактик с низкой поверхностной яркостью (LSB галактик) в 1990 годах и их позиции в соотношении Талли-Фишера показало, что они не ведут себя так, как ожидалось.

Ещё больший вызов теории тёмной материи, или, по крайней мере, её самой популярной форме — холодной тёмной материи (CDM) бросает анализ центров галактик с низкой поверхностной яркостью. Множественные моделирования, основанные на «холодной тёмной материи» дали предсказания формы кривых вращения в центрах систем с преобладанием тёмной материи, таких как эти галактики. Наблюдения кривых вращения не показали предсказанной формы. Эта так называемая «проблема порогового гало» (cuspy halo problem) тёмной холодной материи считается теоретическими космологами «послушной проблемой».

Эти теории тёмной материи продолжают поддерживаться, как объяснение кривых вращения галактики, потому что свидетельства существования тёмной материи получены не только из этих кривых вращения. Они также были успешны в моделировании формирования крупномасштабной структуры в распределении галактик и в объяснении динамики групп и скоплений галактик (как первоначально предложил Цвикки). Наличие темной материи также соответствует результатам наблюдения «гравитационной фокусировки» (гравилинзирования).[источник не указан 3804 дня

Колебание земной оси

В физике существует два понятия, которые используются для описания колебаний оси Земли — прецессия и нутация.

Прецессия — это такое явление, при котором момент импульса небесного тела меняет свою направленность в пространстве. Такое движение можно увидеть на примере волчка, который при запуске имеет вертикальную ось вращения, но волчок имеет свойство постепенного замедления, в процессе которого скорость начинает теряться. Из-за этого ось начинает постепенно отклоняться от привычной вертикали. За счет этого волчок начинает описывать форму подобную конусу.. Подобное движение и есть прецессия.

https://youtube.com/watch?v=JRlbBYEQYT8

https://youtube.com/watch?v=BGEoZW66NpA

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector