Кобальтовая бомба: страшная и несуществующая

История

Помимо «грязных бомб», рассматривалось также механическое распыление радиоактивного материала. В фантастической литературе данный вариант был впервые описан Робертом Хайнлайном в рассказе «Никудышное решение» (англ. Solution Unsatisfactory) в 1940 году.

Идею кобальтовой бомбы высказал в 1950 году Лео Силард в качестве примера оружия, способного превратить континенты на долгое время в нежилые земли. Созданный взрывом высоко в стратосфере, изотоп 60Co способен рассеиваться на больших площадях, заражая их. Такие бомбы никогда не испытывались и не изготавливались из-за отложенности и непредсказуемости эффекта их действия.

Последствия аварии, случившейся на Чернобыльской АЭС 26 апреля 1986 года, можно рассматривать как иллюстрацию того, что может быть результатом применения «грязной бомбы» только с очень большой натяжкой: энергетический эквивалент теплового взрыва составил несколько десятков тонн тротила (от 30 до 100 по разным оценкам), эффективность диспергирования (измельчения и пылеобразования) материала активной зоны реактора обусловлена тем, что взрыв открыл путь к испарению в атмосферу разогретых материалов активной зоны реактора в течение длительного времени. Таким образом, взрыв на ЧАЭС, по сути формирования поражающих факторов, ближе не к взрывам, а к пожарам.

Миф 2: чем мощнее нейтронная бомба, тем лучше

Первоначально нейтронную бомбу планировали наклепать в нескольких вариантах — от одной килотонны и выше. Однако расчёты и испытания показали, что делать бомбу больше одной килотонны не очень перспективно.

Всему виной физика бомбы. В отличие от атомной, у нейтронной основной поражающий элемент — нейтронное излучение. А оно быстро поглощается атмосферой. У поверхности земли через каждые 235 метров нейтроны теряют половину своей энергии. Значит, на расстоянии примерно в полтора-два километра их энергия уменьшится в 120-250 раз. В принципе, это и есть зона эффективного поражения нейтронной бомбы.

Из-за этого нейтронную бомбу(или боеприпас) считали тактическим ядерным оружием.

И поэтому основная масса произведённых бомб и боеприпасов имела мощность не более 10 кт, а чаще всего одну килотонну.

Впрочем, для незащищённого человека полтора километра хватит за глаза. В радиусе до 1,2 километра — гарантированная смерть в 90 процентах случаев.

В общем, надо было придумать, как защищаться от этой штуковины.

Испытания элементов радиологического оружия и его распространение

Испытания и разработки радиологического оружия в определённый период производились Советским Союзом, возможно, в качестве попытки создать дешёвый заменитель настоящего ядерного оружия. В частности, в 1953 году состоялись испытания ракет Р-2 с головными частями заправленными радиоактивной жидкостью «Герань» и «Генератор». Заправочное оборудование для этих целей разрабатывалось как минимум до 1955 года. 6 декабря 1957 решением правительства СССР, в рамках военно-технического сотрудничества, лицензия на производство, полный комплект документации на Р-2 и две собранных ракеты были переданы Китайской Народной Республике, однако передавалась ли документация по радиологическим вариантам боевой части — не известно.

Сама Р-2 была официально принята на вооружение в 1951 году, но с боевой частью на основе обычных взрывчатых веществ. Открытые источники о приёме на вооружение «Герани», «Генератора» или их дальнейших модернизаций по состоянию на 2015 год отсутствуют.

После создания БРСД Р-5 по распоряжению Совмина СССР от 13 августа 1955 г. и постановлению СМ СССР от 16 ноября 1955 были начаты работы под шифром «Генератор-5» по разработке специальной боевой части для неё, закончившиеся тремя испытательными пусками с 5 сентября по 26 декабря 1957 года. Для снаряжения БЧ ядерными материалами применялся специально разработанный защищённый самоходный манипулятор «объект 805» массой 72 тонны.

Испытания радиологического оружия в интересах ВМФ так же производились на Ладожском озере, причём загрязнённое радиацией судно «Кит» было посажено на мель в 1955 году в самом озере и эвакуировано оттуда только в 1991-ом году

Испытания радиологического оружия в СССР были прекращены в 1958 году.

В 2010—2014 гг. в рамках израильского исследовательского проекта «Green Field» по уточнению характера радиоактивного загрязнения в случае применения террористами «грязных бомб», по результатам двадцати полигонных и лабораторных испытаний было впервые доказано незначительное попадание радиоактивных изотопов вовне места подрыва «грязной бомбы» .

Настоящее время

В настоящее время отдельного вида оружия типа «грязной бомбы», стоящего на вооружении армий государств, по официальным данным не существует, так как она не дает немедленного поражающего эффекта (светового излучения, ударной волны и других видов воздействия атомного оружия) и, следовательно, малополезна в качестве боевого оружия. Использование грязной бомбы может привести к радиационному заражению почвы, воды, к очагам возникновения лучевой болезни на больших территориях. Очистка территории может занять продолжительное время. Воздействие ионизирующего излучения может привести к появлению мутаций у потомства. Всё это также не является желательным для государства, если война ведётся ради завоевания территории и получения материальной выгоды от войны.

Миф 5: нейтронная бомба имеет ограниченное применение на земле

Использование нейтронов в качестве поражающего элемента уже в 1960-е годы подсказало разработчикам нейтронного оружия, что его можно эффективно применять в безвоздушном пространстве.

С самого начала нейтронное оружие пытались ставить на ракеты ПРО. В США это были ракеты типаСпринт» с нейтронным боеголовками. Их развернули вокруг крупнейшей авиабазы США Гранд-Форкс(Северная Дакота).

ЗапускСпринта»

Выпущенные врагом атомные ракеты предполагалось перехватывать на высоте в пару десятков километров. В момент перехвата взрывался нейтронный заряд противоракет, и нейтронное излучение выводило из строя детонаторы ракет противника — а заодно вызывало реакцию деления у части плутония, что могло разрушить вражескую ракету за счёт выделяемой энергии.

Однако несмотря на столь радужные планы, данный вид ПРО сочли бесперспективным, и ракеты с нейтронными зарядами быстро сняли с дежурства.

Против нейтронной бомбы довольно быстро нашлипротивоядие». Бор, обеднённый уран и новые керамические материалы свели на нет её эффективность. Впрочем, в конце марта 2018 года американцы заявили, что нейтронное оружие можно весьма перспективно использовать в космосе.

Так что — пусть и не бомбу, но само нейтронное оружие рано списывать в утиль.

Альтернативный взгляд

В 1921 году немецкий физик Отто Ган был немало удивлен своими исследованиями бета-распада урана-X1 (так тогда называли торий-234). Он получил новое радиоактивное вещество, которому дал название уран-Z. Атомный вес и химические свойства нового вещества совпадали с ранее открытым ураном-X2 (привычное нам сейчас название протактиний-234). Вот только период полураспада был больше. В 1935 году группа советских физиков во главе с Игорем Курчатовым получила подобный результат с изотопом брома-80. После этих открытий стало ясно, что мировая физика столкнулась с чем-то непривычным.

Это явление получило название изомерия атомных ядер. Она проявляется в существовании ядер элементов пребывающих в возбужденном состоянии, но живущих довольно долгий срок. Эти метастабильные ядра имеют гораздо меньшую вероятность перехода в менее возбужденное состояние, поскольку имеют ограничения правилами запрета по спину и четности.

К нашему времени уже открыто несколько десятков изомеров, которые могут переходить в обычное для элемента состояние путем радиоактивного излучения, а также спонтанного деления или излучения протона, возможна так же внутренняя конверсия.

Среди всех изомеров наибольший интерес вызвал 178m2Hf.

У этого изомера гафния период полураспада чуть больше 31 года, а энергия скрытая в его переходе в нормальное состояние превышает 300 кг в тротиловом эквиваленте на килограмм массы. То есть, если удастся быстро перевести 1 кг массы изомерного гафния, то он жахнет подобно 3 центнерам тротила. А это уже сулит приличное военное употребление. Бомба получится весьма мощная, причем ядерной ее называть нельзя — ведь нет никакого деления ядер, просто элемент меняет свою изомерную структуру на нормальную.

И начались изыскания…Рекламное видео: В 1998 году Карл Коллинз с коллегами по техасскому университету приступили к планомерным исследованиям. Они облучали рентгеновским излучениям с заданными параметрами кусочек вышеупомянутого изомера гафния, покоящегося на перевернутом стакане. Несколько дней шло облучение изомера, а чувствительные датчики записывали его реакцию на излучение. Затем начался анализ полученных результатов.

Доктор Карл Коллинз в своей лаборатории в Техасском университете.

Спустя некоторое время в издании Physical Review Letters появилась статья Коллинза, в которой он рассказывал об эксперименте по «извлечению» энергии изомерного перехода под воздействием рентгеновского излучения с заданными параметрами. Вроде бы получилось увеличение гамма-излучения изомера, что свидетельствовало об ускорении перехода изомера в нормальное невозбужденное состояние.

Гафниевая бомба

Часто, то что для физиков всего лишь игра ума, для военных новый способ уничтожения себе подобных. Мало того, что можно было получить мощную взрывчатку (килограмм 178m2Hf эквивалентен трем центнерам тротила), так еще и большая часть энергии должна была выделиться в качестве гамма-излучения, что теоретически позволяло вывести из строя радиоэлектронику вероятного противника.

Эксперимент по получению индуцированного гамма-излучения от образца Hf-178-m2.

Также очень заманчиво выглядели и юридические аспекты применения гафниевой бомбы: при взрыве бомб на ядерных изомерах не происходит превращения одного химического элемента в другой. Соответственно, изомер не может считаться ядерным оружием и, как следствие, согласно международному соглашению под запрет оно не попадает.

Пентагон выделил на эксперименты десятки миллионов долларов, и работа над гафниевой бомбой закипела. Кусок 178m2Hf облучали в нескольких военных лабораториях, но результата не было. Коллинз убеждал экспериментаторов, что мощность их излучения недостаточна для получения результата, и мощность постоянно наращивали. Дошло до того, что изомер попробовали облучать с помощью синхротрона Брукхейвенской национальной лаборатории. В результате энергию начального облучения повысили в сотни раз, а осязаемого эффекта все не было.

Бессмысленность работ стала понятна даже военным — ведь даже если эффект и появится, не разместишь же заранее на территории вероятного противника синхротрон. А затем слово взяли экономисты. Они высчитали, что производство 1 грамма изомера обойдется в 1,2 миллиона долларов. Да еще для подготовки этого производства придется затратить кругленькую сумму в 30 миллиардов долларов.

Гафний.

В 2004 году финансирование проекта резко урезали, а через пару лет и вовсе свернули. Коллинз согласился с выводами коллег о невозможности создания бомбы на основе изомера гафния, но полагает, что это вещество можно использовать для лечения онкобольных.

Угрозы террористического применения радиологического оружия

Радиоактивная пыль

Радиологическому оружию, как еще называют «грязные бомбы», вовсе не обязательно быть собственно бомбой. В рассказе Хайнлайна, например, русские (создавшие подобное оружие практически одновременно с американцами) рассеивали радиоактивную пыль над американскими городами прямо с самолетов, как инсектицид на поля (кстати, еще одно меткое предвиденье автора: задолго до начала холодной войны он предугадал, что именно СССР станет основным соперником Соединенных Штатов в области сверхоружия). Даже выполненное в форме бомбы, подобное оружие не наносит существенных материальных разрушений — небольшой заряд взрывчатого вещества используется для того, чтобы рассеять в воздухе радиоактивную пыль.

При ядерном взрыве образуется значительное количество разнообразных неустойчивых изотопов, помимо того, происходит заражение наведенной радиоактивностью, возникающей вследствие нейтронного ионизирующего облучения почвы и объектов. Однако уровень радиации после ядерного взрыва относительно быстро падает, поэтому самый опасный период можно переждать в бомбоубежище, а зараженная территория спустя несколько лет становится пригодна для использования в хозяйственных целях и для проживания. Так, например, Хиросима, пострадавшая от урановой бомбы, и Нагасаки, где была взорвана бомба из плутония, начали отстраиваться заново через четыре года после взрывов.

Совсем иначе бывает, когда взрывается достаточно мощная «грязная бомба», специально предназначенная для максимального загрязнения территории и превращения ее в подобие Чернобыльской зоны отчуждения. Различные радиоактивные изотопы имеют разный период полураспада — от микросекунд до миллиардов лет. Наиболее неприятны из них те, полураспад которых происходит за годы — время, существенное относительно продолжительности человеческой жизни: их не пересидишь в бомбоубежище, при достаточном загрязнении ими местность остается радиоактивно опасной на протяжении нескольких десятилетий, и поколения успеют смениться несколько раз, прежде чем в разрушенном городе (или на другой территории) снова можно будет работать и жить.

К числу самых опасных для человека изотопов относятся стронций-90 и стронций-89, цезий-137, цинк-64, тантал-181. Следует иметь в виду, что разные изотопы по‑разному влияют на организм. Например, йод-131, хоть и имеет относительно короткий период полураспада в восемь дней, представляет серьезную опасность, так как быстро накапливается в щитовидной железе. Радиоактивный стронций накапливается в костях, цезий — в мышечных тканях, углерод распределяется по всему организму.

Биография

Шреддер украл Караи, и Сплинтер думал, что она погибла. А Караи думала, что Шреддер её настоящий отец, а Сплинтер враг, как и черепашки-ниндзя. Но когда черепашки привели её в своё логово и там она увидела портрет своих родителей, она поняла где правда, а где ложь. Тигриному Когтю удалось одолеть Караи и силой отвести обратно в логово Шреддера, где её посадили в подземелье, Черепашки помогли Караи сбежать и привели её в свое логово.

Но Караи хотелось отомстить Шреддеру за обман и убийство матери и поэтому она решила одна отправиться в логово врага. Но увы Караи проиграла битву и её поймали. Шреддер признался, что самого начала решил использовать Караи как приманку, чтобы приманить черепах и мутировать их в злобных безумных змей-мутантов, что бы те убили Сплинтера.

Однако в результате несчастного случая Караи превратилась в змею-мутанта и исчезла.

Однако, она появилась в серии «Вторжение» и спасла Сплинтера.

В третьем сезоне на Караи охотились Иван Стеранко и Антон Зек для того, чтобы обменять её у Шреддера на выезд из захваченного Крэнгами города, но черепашки им помешали и Караи указала им на место, где хотела с ними встретиться произнеся «Комета».

Позже черепашки догадались, что речь шла о парке развлечений в Кони айлинде. Однако за Караи уже охотились посланные Шреддером Антон Зек и Иван Стеранко, уже мутированные в Бибопа и Рокстеди. Черепашкам удалось их одолеть, но не удалось вылечить Караи, по скольку как сказал Донателло она была особенным мутантом, то есть мутаген, который на неё воздействовал отличался от всех.

Караи сказала, что она слишком опасна и простившись с черепашками уплыла с острова. Но её все таки сумели поймать Бибоп и Рокстеди и отвести к Шреддеру, который поручил Бакстеру Стокману вернуть Караи её прежний облик. Позже Караи появилась в 18 серии третьего сезона «Смертельный Яд» где сражалась на стороне Шреддера из за того, что Стокман подчинил её с помощью мозгового червя-мутанта.

Карай появилась в серии «Ловушка для четырёх», в конце которой её смыло водяным потоком (предположительно за границу Нью-Йорка) и выплюнула изо своего рта мозговой червь-мутанта. Но в 15 серии 4 сезона оказывается живой. Она присваевает старое убежище Шреддера, нанимая новых солдат Клан Фут, дабы уничтожить Империю Саки. Вместе с черепахами они уничтожают запасы оружия банды Шреддера, Сжигают деньги с казны Шреддера под прикрытием буддийского храма, уничтожают Дона Визиосо и Пурпурных драконов взрывают прибыльный завод и уничтожают фабрику Футботов. Также она берет на себя старый шлем Шреддера Куро Кубуто, и власть над Футами. Карай в 20 серии 4 сезона увидев Шреддера мутантом начала драку, а Шинигами помогала ей, но Шреддер поставил условие — если Карай не сдастся ему, то он раздавит Шинигами и Карай согласилась. Шреддер бросил вызов Сплинтеру и победил бы его, но мутаген в нем был нестабилен и ослабил его. В финале 4 сезона она билась со Шреддером, но проиграла после побыла в больнице.

В 5 сезоне 2 серии она хотела прикончить Татсу, но передумала. Потом она помогала черепашкам в войне с Каваксасом, Лордом Дреггом и Кренгом из другого измерения.

Примечания

  1. Головные уборы // Военная энциклопедия :  / под ред. В. Ф. Новицкого . — СПб. ; [М.] : Тип. т-ва И. Д. Сытина, 1911—1915.

История

Помимо «грязных бомб», рассматривалось также механическое распыление радиоактивного материала. В фантастической литературе данный вариант был впервые описан Робертом Хайнлайном в рассказе «Никудышное решение» (англ. Solution Unsatisfactory) в 1940 году.

Идею кобальтовой бомбы высказал в 1950 году Лео Силард в качестве примера оружия, способного превратить континенты на долгое время в нежилые земли. Созданный взрывом высоко в стратосфере, изотоп 60Co способен рассеиваться на больших площадях, заражая их. Такие бомбы никогда не испытывались и не изготавливались из-за отложенности и непредсказуемости эффекта их действия.

Последствия аварии, случившейся на Чернобыльской АЭС 26 апреля 1986 года, можно рассматривать как иллюстрацию того, что может быть результатом применения «грязной бомбы» только с очень большой натяжкой: энергетический эквивалент теплового взрыва составил несколько десятков тонн тротила (от 30 до 100 по разным оценкам), эффективность диспергирования (измельчения и пылеобразования) материала активной зоны реактора обусловлена тем, что взрыв открыл путь к испарению в атмосферу разогретых материалов активной зоны реактора в течение длительного времени. Таким образом, взрыв на ЧАЭС, по сути формирования поражающих факторов, ближе не к взрывам, а к пожарам.

Испытания элементов радиологического оружия и его распространение

Испытания и разработки радиологического оружия в определённый период производились Советским Союзом, возможно, в качестве попытки создать дешёвый заменитель настоящего ядерного оружия. В частности, в 1953 году состоялись испытания ракет Р-2 с головными частями заправленными радиоактивной жидкостью «Герань» и «Генератор». Заправочное оборудование для этих целей разрабатывалось как минимум до 1955 года. 6 декабря 1957 решением правительства СССР, в рамках военно-технического сотрудничества, лицензия на производство, полный комплект документации на Р-2 и две собранных ракеты были переданы Китайской Народной Республике, однако передавалась ли документация по радиологическим вариантам боевой части — не известно.

Сама Р-2 была официально принята на вооружение в 1951 году, но с боевой частью на основе обычных взрывчатых веществ. Открытые источники о приёме на вооружение «Герани», «Генератора» или их дальнейших модернизаций по состоянию на 2015 год отсутствуют.

После создания БРСД Р-5 по распоряжению Совмина СССР от 13 августа 1955 г. и постановлению СМ СССР от 16 ноября 1955 были начаты работы под шифром «Генератор-5» по разработке специальной боевой части для неё, закончившиеся тремя испытательными пусками с 5 сентября по 26 декабря 1957 года. Для снаряжения БЧ ядерными материалами применялся специально разработанный защищённый самоходный манипулятор «объект 805» массой 72 тонны.

Испытания радиологического оружия в интересах ВМФ так же производились на Ладожском озере, причём загрязнённое радиацией судно «Кит» было посажено на мель в 1955 году в самом озере и эвакуировано оттуда только в 1991-ом году

Испытания радиологического оружия в СССР были прекращены в 1958 году.

В 2010—2014 гг. в рамках израильского исследовательского проекта «Green Field» по уточнению характера радиоактивного загрязнения в случае применения террористами «грязных бомб», по результатам двадцати полигонных и лабораторных испытаний было впервые доказано незначительное попадание радиоактивных изотопов вовне места подрыва «грязной бомбы» .

Настоящее время

В настоящее время отдельного вида оружия типа «грязной бомбы», стоящего на вооружении армий государств, по официальным данным не существует, так как она не дает немедленного поражающего эффекта (светового излучения, ударной волны и других видов воздействия атомного оружия) и, следовательно, малополезна в качестве боевого оружия. Использование грязной бомбы может привести к радиационному заражению почвы, воды, к очагам возникновения лучевой болезни на больших территориях. Очистка территории может занять продолжительное время. Воздействие ионизирующего излучения может привести к появлению мутаций у потомства. Всё это также не является желательным для государства, если война ведётся ради завоевания территории и получения материальной выгоды от войны.

Где на компьютерной клавиатуре находится кнопка RMB?

1980 год

Применение оружия, обладающего радиологическим поражающим эффектом в боевых действиях

На вооружении армий США, России и Великобритании в настоящее время состоят снаряды с поражающими элементами, выполненными из обеднённого урана-238. Уран, по сравнению со свинцом, обладает почти вдвое большей плотностью, что увеличивает его привлекательность для использования в боеприпасах. В то же время уран, используемый для изготовлении боеприпасов, хотя и на 40 % менее радиоактивен, чем природный, тем не менее по формальным признакам попадает в категорию радиоактивных, а оружие, которое его содержит, может быть, при желании, отнесено к радиологическому.

По фактам применения указанного вида боеприпасов во время боевых действий в Югославии, Ираке, а так же в Сирии в СМИ неоднократно озвучивались соответствующие обвинения. Так же указывалось, что уран весьма горюч и при попадании урановых поражающих элементов в цель происходит его сгорание или диспергирование (то есть образование мелкой урановой пыли), после чего обеззараживание местности оказывается весьма трудоёмким и слабореализуемым.

Ответом на эти обвинения обычно были указания на относительно слабую радиоактивность обеднённого урана, применяемого США и аргументация о том, что привнесённая им радиоактивность сопоставима с естественной радиоактивностью калийных удобрений или облицовочных материалов из гранита.

Так же, со стороны сербских и российских источников выдвигалась версия о том, что, наряду с боеприпасами, содержащими Уран-238, американскими военными применялись аналогичные боеприпасы на основе намного более радиоактивного Урана-236, радиологическая поражающая компонента которого несомненна. В частности, подобные утверждения делались перед журналистами начальником экологической безопасности Вооруженных Сил РФ генералом-лейтенантом Борисом Алексеевым. В своих официальных источниках США никогда не подтверждали существование подобных модификаций боеприпасов.

По состоянию на 2015 год неизвестны сколько-нибудь системные открытые исследования долговременного действия радиологической поражающей компоненты этих боеприпасов на местностях их применения. Вопрос о том, следует ли отнести их к радиологическим, остаётся предметом публичной пропагандистской дискуссии.

Слухами земля полнится

Несмотря на то, что грязные бомбы никогда не производились и не использовались в реальных боевых действиях, журналистские «утки», связанные и этой темой, регулярно появлялись в печати, вызывая неоднозначную реакцию как у общественности, так и у спецслужб. Например, 1955 по 1963 гг. британцы испытывали атомные заряды в Маралинге (Южная Австралия). В рамках этой программы была проведена операция под кодовым названием Antler, цель которой заключалась в испытаниях термоядерного оружия. Программа включала три теста с зарядами разной мощности (0.93, 5.67 и 26.6 килотонн), причём в первом случае (кодовое имя — Tadje, 14 сентября 1957 года) на полигоне располагались радиохимические метки из обычного кобальта (Co-59), который под воздействием нейтронов превращается в кобальт-60. Измеряя интенсивность гамма-излучения меток после испытаний, можно довольно точно судить об интенсивности нейтронного потока при взрыве. Слово «кобальт» просочилось в прессу, и это послужило причиной слухов о том, что Великобритания не только построила «грязную» кобальтовую бомбу, но и испытывает её. Слухи не подтвердились, но «утка» серьёзно навредила международному имиджу Британии — вплоть до того, что в Маралингу выезжала Королевская комиссия для проверки того, чем всё-таки занимаются в Австралии британские ядерщики.

Единицы измерения поглощенной организмом радиации — зиверт (Зв) и устаревший, но еще встречающийся в публикациях бэр («биологический эквивалент рентгена», 1 бэр = 0,01 Зв). Нормальная доза радиоактивного облучения, получаемая человеком от природных источников в течение года, составляет 0,0035−0,005 Зв. Облучение в 1Зв — это нижний порог развития лучевой болезни: существенно слабеет иммунитет, ухудшается самочувствие, возможны кровотечения, выпадение волос и возникновение мужского бесплодия. При дозе в 3−5 Зв без серьезной медицинской помощи половина пострадавших умирает в течение 1−2 месяцев, у выживших так или иначе высока вероятность развития раковых заболеваний. При 6−10 Зв у человека практически полностью отмирает костный мозг, без полной его пересадки вероятности выжить нет, смерть наступает через 1- 4 недели. Если человек получил более 10 Зв, спасти его невозможно.

Кроме соматических (то есть возникающих непосредственно у облученного человека) последствий имеют место еще и генетические — проявляющиеся у его потомства. Следует иметь в виду, что уже при относительно небольшой дозе радиоактивного облучения в 0,1 Зв вероятность генных мутаций удваивается.

Почему не цветет абрикос в Подмосковье

Многие садоводы задаются вопросом, почему абрикос не цветет. На самом деле оснований этому достаточно много.

Абрикос может не цвести по нескольким причинам:

  •  возможно, дерево еще слишком молодо, и момент цветения еще не настал;
  •  замерзание плодовых почек (в очень морозные зимы либо в теплую осень, когда почки распускаются преждевременно);
  •  болезни дерева (камедетечение);
  •  неправильная, чрезмерная обрезка;
  •  неподходящее для посадки место, плохая почва.

Вырастить в Подмосковье абрикос не так-то просто, он постоянно требует внимания и ухода, но труд и терпение всегда приносят достойные результаты.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector