Электромагнитный импульс высокой мощности своими руками. как сделать магнитострикционный излучатель своими руками: описание, схема и рекомендации. что нужно для сборки

Содержание:

Введение

Правильный выбор генератора сигналов для имитации источников электромагнитных излучений (ЭМИ) при проведении испытаний средств и комплексов радиоэлектронной борьбы (РЭБ) – непростая задача. Отчасти сложность выбора заключается в необходимости выполнения индивидуальных требований инженера-испытателя и учета особенностей решаемой задачи. Поэтому ни один генератор сигналов не будет идеальным решением на любой случай. Еще одним ключевым моментом, осложняющим выбор, является недостаток информации о подходящем оборудовании. Большинство инженеров попросту не имеют достаточного опыта, чтобы понимать, какие типы источников сигналов и когда нужно использовать. Эта проблема имеет место не только при решении прикладных задач в процессе создания средств и комплексов РЭБ, но не менее актуальна и применительно ко всем задачам, связанным с радиолокационными системами (например, системами посадки, метеорологическими РЛС и т.д.). Фактически любой инженер, сталкивающийся с необходимостью исследования характеристик систем радиолокации и РЭБ, в той или иной степени нуждается в генераторе сигналов для имитации различных типов источников ЭМИ. С помощью генераторов сигналов выполняются: имитация условий ведения РЭБ, запуск различных сценариев испытаний путем формирования последовательностей импульсных сигналов и общей сигнально-помеховой обстановки для определения реакции приемных систем, а также другие виды проверок.

Несмотря на все трудности на пути к правильному выбору источника сигналов результат стоит затраченных усилий, поскольку, сделав неверный выбор, вы столкнетесь с рядом негативных последствий. Инженер может ошибочно задать неверные характеристики или выбрать оборудование, вообще не обладающее нужными для выполнения работы функциями. Аналогичным образом инженер может непреднамеренно задать избыточные требования к оборудованию. Подобная ошибка повлечет чрезмерные траты, и в результате дорогостоящее полнофункциональное оборудование будет использоваться там, где для решения задачи хватило бы старого и менее дорогого. К счастью для любого инженера- испытателя систем радиолокации и РЭБ, сталкивающегося с этой дилеммой, теперь появились общие критерии, помогающие сделать выбор. Эти критерии не только помогут сузить круг вариантов выбора, но и гарантируют эффективное использование имеющихся активов. В зависимости от измерительных задач, решаемых при испытаниях комплексов РЭБ, одновременно могут использоваться различные типы генераторов сигналов.

Сколько пар носков Вы покупаете ежегодно?

Мифические чудовища

Можно ли защититься?

Вся военная электроника оборудовалась специальными экранами и надежно заземлялась. В ее состав включались специальные предохранительные устройства, разрабатывалась архитектура электроники максимально устойчивая к ЭМИ.

Конечно, если попасть в эпицентр применения электромагнитной бомбы большой мощности, то защита будет пробита, но на определенном расстоянии от эпицентра, вероятность поражения будет существенно ниже. Электромагнитные волны распространяются во все стороны (как волны на воде) поэтому их сила убывает пропорционально квадрату расстояния.

Кроме защиты, разрабатывались и средства радиоэлектронного поражения. С помощью ЭМИ планировали сбивать крылатые ракеты, есть информация об успешном применении этого метода.

В настоящее время разрабатывают передвижные комплексы, что могут испускать ЭМИ высокой плотности, нарушая работу вражеской электроники на земле и сбивая летательные аппараты.

История создания

Навигация

Панцершрек пехотное противотанковое оружие вермахта panzerschreck фото

Панцершрек пехотное противотанковое оружие вермахта panzerschreck фото, немецкая армия располагала 88-мм Panzerschreck «Гроза танков» который был копией американской базуки. В 1942 г. солдаты вермахта в Се­верной Африке захватили американский РПГ ручной противотанковый гранатомет М1 Базука — реактив­ное противотанковое. Частичным копированием амери­канской базуки, и стало производ­ство 88-мм «Ракетенпанцербуше 54» (Raketen Panzerbuchse 54). Заметим фаустпатрон и панцершрек совершенно различные представители пехотного противотанкового оружия вермахта, неправильно именуемыми у нас фаустпатронами. Причем немецкое изделие почти по всем параметрам превосходило американское. По толщине пробития брони 150 мм против 90 у американцев. Улучшили спуск: индукционная катушка у немцев против аккумулятора (в мороз разряжался) в американской базуке. Панцершрек имел эффективную дальность 120 метров, стреляя оперенной ракетой весом 660 грамм с кумулятивным зарядом, способным пробить 100-мм броню.

фото — американцы сравнивают свой гранатомет М1 «Базука» с трофейным германским R.Pz.B 54 «Панцершрек»

Панцершрек пехотное противотанковое оружие вермахта panzerschreck фото, обычно его обслуживал расчет из двух человек, наводчик занимал основную позицию, нацеливая, в то время как заряжающий производил зарядку «Панцершрека». Ударно-спусковой механизм через импульсный генератор, типа магнето, воспламенял реактивный заряд мины. «У американской бузуки воспламенение происходило от аккумулятора, что было причиной отказа в зимнее время». Стрельба из ружья велась с помощью прицела, состоящего из переднего и заднего визиров. Для стрельбы использовалась мина кумулятивного действия, способная пробить лист броневой стали толщиной 150-220 мм. Прекрасно подходящий для использования в условиях города. «Panzerschreck» имел дальность стрельбы на открытом пространстве до 180 метров. Это означало, что расчет подвергался риску попасть под огонь вражеской пехоты, стрелковое оружие которой имело значительно больший радиус действия.

Подразделение оснащенное автоматами stg 44 и панцершрек panzerschreck фото

Panzerlaust («Танковый кулак») в целом являлся более простым оружием — небольшим, легким, дешевым в производстве и одноразовым, то есть после выстрела оно уже не могло больше использоваться. Снаряд, по существу, был небольшой ракетой с ребрами стабилизатора. После производства выстрела газы выталкивали гранату из трубы, и с задней стороны образовывалась реактивная струя, устраняя таким образом отдачу. «Панцерфауст» мог пробить броню толщиной до 200 мм в радиусе примерно 60 метров, но использовался исключительно для стрельбы прямой наводкой. Германская пропа­гандистская машина так же, назвала «Панцершрек» (Panzerschreck), «броневым ноч­ным кошмаром» или «бронебой­ным боевым топором». Солдаты, которые применяли его, дали ему свое прозвище — «Офенрор» (Ofenrohr — печная труба), из за оставленного следа копоти от вылетевшего заряда. Первоначально панцершрек пехотное противотанковое оружие вермахта panzerschreck фото, не имел защитного щитка, и выстрел необходимо было производить в противогазе.

Для избежания опаления газами из ракеты использовался противогаз

С установкой предохранительного щитка необходимость применения противогаза отпала.

хотя фото и постановочное, противогаз на высшем офицерском корпусе смотрелся бы лучше

стрельба из Панцершрек

Пусковая установка, длиной 1,64 м, весила всего 9, 18 кг и, вследствие этого, была идеальным оружием для охотников за танками. Panzerfaust производился в огромных количествах— с октября 1944-го по апрель 1945 года немецкая промышленность произвела 5600000 «фаустпатронов» различных типов. В использование фаустпатрон был простым оружием, это позволило за короткое время обучить мальчишек и пожилых людей «Фольксштурма» (отряды народного ополчения).

юнцы из фольксштурма

Панцершрек пехотное противотанковое оружие вермахта panzerschreck фото, стал бичом для бронетанковых подразделений союзников, имеются ввиду именно городские бои.

Хотя как видите и в поле находил применение, в качестве засады и с хорошей маскировкой

танк подбитый кумулятивным зарядом

Панцершрек пехотное противотанковое оружие вермахта panzerschreck фото

Импровизированная защита своих танков, например, мешки с песком, предохранительные сетки, и так далее не могла помочь в борьбе с этим оружием.

Импровизированная навесная защита от фаустпатронов и панершреков, кстати не спасала

Брони способной противостоять Фаустпатрону не существовало. Известно, что немедленно расстреливались на месте захваченные в плен снайперы и огнеметчики. Такая же незавидная участь ждала попавших в плен фаустпатронщиков.

Природные источники и их влияние

молния

Основная статья : Молния

Молния — это естественный разрядный процесс в атмосфере , который приводит к сильному электромагнитному воздействию, особенно в области канала молнии и в точке удара. Этот эффект может передаваться через металлические кабели и, таким образом, вызывать серьезные повреждения. Этот электромагнитный импульс также английский Молния Электромагнитный импульс , сокращенно LEMP называется.

Магнитогидродинамический ЭМИ

Основная статья : Магнитная буря

Намагниченная плазма от солнечной вспышки может индуцировать низкочастотные токи в сетях энергоснабжения на большой площади от нескольких минут до часов , что, например , может привести к явлению насыщения в силовых трансформаторах . Следствием этого могут быть перебои в подаче электроэнергии .

Упрочнение транспорта из ПУОС

В случае забастовки EMP, транспорт будет важной проблемой. Нельзя предполагать, что экстренные службы смогут прийти к вам в случае серьезной травмы, остановки сердца или другой неотложной медицинской помощи

Возможность перемещаться из одного места в другое может также позволить людям искать новые источники пищи и чистой воды в случае, если существующие магазины исчерпаны.

Транспорт также важен в случае необходимости переезда в более безопасное место. Поблизости может быть пожар, который угрожает повредить ваш дом. Или кружат вооруженные группы.

В определенной степени, большинство транспортных средств уже имеют некоторый тип защиты, потому что легковые и грузовые автомобили представляют собой по существу металлические корпуса. Это помогает защитить пассажиров автомобиля, например, в случае молнии.

Тем не менее, новые автомобили также в значительной степени зависят от электронных систем, и испытания показали, что воздействие электромагнитной энергии все еще может серьезно скомпрометировать автомобиль. Основная проблема заключается в том, что эксперименты показали, что взрыв ЭМИ может повредить электронику транспортного средства, вызвать остановку двигателя автомобиля, повредить систему зажигания и вызвать другие неисправности.

Один из способов защитить транспортное средство — это поставить его в клетку Фарадея, достаточно большую для его удержания, и выключить двигатель. Однако для этого потребуется какое-то предварительное предупреждение. Это возможно в случае солнечной вспышки, поскольку обнаружение на большом расстоянии может позволить людям подготовиться к прибытию в течение нескольких часов. Однако этот тип заблаговременного предупреждения может быть менее вероятным в случае ядерной ЭМИ. Еще одна вещь, которую могут сделать люди, — это использовать более старый автомобиль вместо более нового. Старые автомобили много лет назад не зависели от работы электронных систем.

Таким образом, вместо того, чтобы иметь новую машину в своем гараже, у него был бы старый грузовик. Это более или менее устраняет электронные устройства из уравнения. Вы также можете выбрать что-то, что использует дизельный двигатель. Преимущество этого — в транспортном средстве, в котором не используется система зажигания, поэтому у EMP есть одна вещь, которая может быть повреждена.

У дизельных транспортных средств также есть дополнительное преимущество использования двигателя внутреннего сгорания, который лучше справляется с импровизированным или элементарным топливом. Если ПУОС повредил электронику, используемую станциями техобслуживания и другими хранилищами топлива, дизельный двигатель может предложить дополнительную и полезную гибкость.

В искусстве

Что это такое и источники излучения

Электромагнитное излучение – это электромагнитные волны, которые возникают при возмущении магнитного или электрического поля. Современная физика трактует этот процесс в рамках теории корпускулярно-волнового дуализма. То есть, минимальной порцией электромагнитного излучения является квант, но в тоже время оно имеет частотно-волновые свойства, определяющие его основные характеристики.

Спектр частот излучения электромагнитного поля, позволяет классифицировать его на следующие виды:

  • радиочастотное (к ним относятся радиоволны);
  • тепловое (инфракрасное);
  • оптическое (то есть, видимое глазом);
  • излучение в ультрафиолетовом спектре и жесткое (ионизированное).

Детальную иллюстрацию спектрального диапазона (шкала электромагнитных излучений), можно увидеть на представленном ниже рисунке.

Фото Ан-72

Общая защита от электромагнитного излучения

Предлагаемые защитные действия:

• Отключайте электронные устройства, когда они не используется.
• Отключайте электроприборы, когда они не используются.
• Не оставляйте компоненты, такие как принтеры и сканеры, в режиме ожидания.
• Используйте короткие кабели для работы.
• Установите защитную индукцию вокруг компонентов.
• Используйте компоненты с автономными батареями.
• Используйте рамочные антенны.
• Подключите все провода заземления к одной общей точке заземления.
• По возможности используйте небольшие устройства, которые менее чувствительны к ЭМИ.
• Установите MOV (металл-оксид-варистор) переходные протекторы на портативные генераторы.
• Используйте ИБП для защиты электроники от всплеска EMP.
• Используйте блокирования устройства.
• Используйте гибридную защиту (например, полосовой фильтр с последующим молниеотводом).
• Держите чувствительные приборы и устройства подальше от длинных трасс кабеля или электропроводки, антенн, растяжек, металлических башен, гофрированного металла, стальных ограждений, железнодорожных путей.
• Устанавливайте кабель под землей, в экранированных кабельных каналах.
• Постройте одну или несколько клеток Фарадея.

Следует заранее продумать защитную систему. Например, резервный генератор, вероятно, не будет поврежден солнечной бурей, но ЭМИ может повредить чувствительные электронные контроллеры, так что экранирование является целесообразным. И наоборот, такой прибор, как источник бесперебойного питания (ИБП) может быть полезным сам по себе в качестве компонента защиты. Если EMP происходит, резкий рост может уничтожить ИБП, но это, скорее всего, защитит от разрушения подключенные устройства и компоненты.

Как построить клетку Фарадея

Клетку Фарадея можно смастерить в домашних условиях из металлических емкостей и контейнеров, таких как мусорный бак или ведро, шкаф, сейф, старая микроволновка. Подойдет любой объемный предмет, который имеет непрерывную поверхность без зазоров или больших отверстий. Необходимо наличие плотно облегающей крышки.

Установите непроводящий материал (картон, дерево, бумага, листы пены или пластика) на всех внутренних сторонах клетки Фарадея, чтобы сохранить содержимое от прикосновения металла. Кроме того, можно обернуть каждый элемент в пузырчатую пленку или пластик. Все приборы, которые находятся внутри, должны быть изолированы от всего остального и особенно от металлического контейнера.

Клетка Фарадея из мусорного бака

Клетка Фарадея из металлического ящика

Что поместить в клетку Фарадея

Поместите внутрь клетки весь электронный и электротехнический арсенал, который входит в НЗ, и те компоненты, которые закуплены «впрок». Так же там необходимо расположить все, что может быть чувствительно к ЭМИ, в случае получения предупредительного сигнала. В том числе:

• Батарейки для радио.
• Портативные рации.
• Портативные телевизоры.
• Светодиодные фонарики.
• Солнечное зарядное устройство.
• Компьютер (ноутбук или планшет).
• Сотовые телефоны и смартфоны.
• Различные лампочки.
• Зарядные шнуры для мобильных телефонов, планшетов и т.п.

Как защитить важную информацию от ЭМИ

Имейте в виду, что электромагнитный импульс может нарушить инфраструктуру на длительное время, а в случае Апокалипсиса – навсегда. Поэтому стоит заранее подготовиться, и произвести резервное копирование важных файлов с помещением их на разных носителях в разные клетки Фарадея.

Вместо послесловия

Если предупреждение об ЭМИ небыло получено, но вы видите яркую вспышку с последующим отключением энергосистем, действуйте по своему усмотрению. Ведь нельзя знать заранее, насколько тяжелым и опасным будет электромагнитный импульс, дальность которого при некоторых видах взрывов достигает 1000 км. Но благодаря подготовке и предварительному планированию можно определить, насколько реально мы сможем выжить в мире после ЭМИ.

Будьте готовы, и будете в безопасности!

www.extreme-voyage.ru

Первый в мире бомбардировщик «Илья Муромец»

Тактико-технические характеристики

Источники генерации сверхмощных индукционных ЭМИ в кабельных линиях

ЭМИ молнии

Практически все стационарные и транспортные электроэнергетические и информационно-управляющие комплексы в той или иной степени могут быть подвержены воздействию сверхмощных электромагнитных импульсов, создаваемых молнией. Ежесекундно на земном шаре происходит около 100 ударов молнии. Для нашей страны среднее число ударов молнии в 1 км² поверхности земли за 100 грозовых часов составляет 6,71 . Каждый гражданский самолет в процессе эксплуатации подвергается в среднем одному разряду молнии . Фирма «Боинг» провела исследования методов защиты элементов систем электроснабжения самолетов, вертолетов и крылатых ракет: силовых приводов систем управления, генераторов, циклоконверторов и др. . По ее данным, отсутствие каких-либо средств защиты может привести к возникновению в указанных элементах бросков напряжения и тока до нескольких десятков киловольт и килоампер при длительности в несколько микросекунд и, вследствие этого, к серьезному повреждению систем.

Влияние грозы на электрические установки можно определить двумя параметрами: значением пикового тока (приблизительно 250 кА) и максимальной скоростью изменения тока (приблизительно 30–100 кА/мкс), влияющей на наведение напряжения (до 200 кВ) в проводящих контурах вокруг канала тока разряда молнии. Электрическая составляющая ЭМИ молнии Em ≈ 40 кВ/м, а магнитная составляющая Hm = 160 А/м на расстоянии 100 м от молнии. Время нарастания находится в пределах 200–500 нс . Наибольшие значения амплитуд в спектре ЭМИ молнии соответствуют частотам 0,3–20 кГц, а ЭМИ разрядов между облаками (без обратного разряда): 0,1–10 МГц. Из этого следует актуальность прогнозирования (предсказания) и диагностики (измерения параметров) ЭМИ молний в целях ускорения принятия решения по защите от них. Однако не менее актуальным является разработка средств имитации ЭМИ молнии вблизи кабельных линий, например, самолетных жгутов, и их использование на стадиях испытаний оборудования.

ЭМИ ядерных взрывов и «электромагнитной бомбы» («Е-бомбы»)

Наибольшую опасность, как по степени поражения, так и по области активного воздействия, для объектов электрорадиосвязи представляют стратосферные (10–60 км) и ионосферные (60–500 км) ядерные взрывы . Применение электромагнитного оружия высокой мощности в основном ориентируется на высоты до 50 км.

Ключевыми технологиями, применяемыми при создании «электромагнитной бомбы» («Е-бомбы»), являются: генераторы со сжатием магнитного потока при помощи взрывчатки, а также работающие на взрывчатке или пороховом заряде магнитогидродинамические генераторы и целый набор микроволновых устройств высокой мощности .

Известным видом микроволнового оружия является так называемый взрывной генератор с сжатием магнитного потока («FC-генератор»). В настоящее время удалось довести пиковую мощность «FC-генераторов» до десятков тераватт. Анализ публикаций позволяет выявить типовые параметры ЭМИ «FC-генератора»:

Другим видом электромагнитного оружия являются микроволновые генераторы с виртуальным катодом — виркаторы. Экспериментально от виркаторов получены мощности от 170 кВт до 40 ГВт в сантиметровом и дециметровом диапазонах. Американский образец оружия данного класса под условным названием MPS-II использует зеркальную антенну диаметром 3 м. Он развивает импульсную мощность около 1 ГВт (напряжение 265 кВ, ток 3,5 кА). При напряженности поля в несколько киловольт на метр он вызывает напряжение от сотен вольт до киловольт на облученных проводах и кабелях.

Обобщенные параметры СЭМИ, рекомендуемые для имитации:

Литература

  • Манфред А. З. Образование французско-русского союза. — М.: Наука, 1975. — 376 с.
  • Тарле Е. В. Европа в эпоху империализма. 1871—1919 гг. // Тарле Е. В. Сочинения. — М., 1958. Т. 5;
  • Тэйлор А. Дж. П. Борьба за господство в Европе. 1848—1918. — М.: Издательство иностранной литературы, 1958. — 644 с.
  • Girault R. Diplomatie européenne et imperialisme (1871—1914). — P., 1997.
  • Schmitt B. E. Triple entente and triple alliance. — N. Y., 1934

Пороховое оружие

Достоинства:

Мощность и простота в обращении.

Недостатки:

Ограничение в использовании.

ППО под капсюль «жевело»

Отличный подводный пистолет – прост, компактен и надежен. Гарпун вставляется в ствол, отводится затвор в магазин, рассчитанный на 4 капсюля. Вставляются заряды, закрывается затвор, взводится курок и ружье готово к стрельбе.

Питолет ППО

Достоинства:

Мощность и дальность вне конкуренции

Недостатки:

Запрет использования в спортивной и любительской рыбалке.

Как смастерить рукоятку?

Защита от ЭМИ оружия

Существует много эффективных средств защиты радаров и электроники от ЭМИ-оружия.

Меры применяются трех категорий:

  1. блокирование входа части энергии электромагнитного импульса
  2. подавление индукционных токов внутри электрических схем быстрым их размыканием
  3. использование электронных устройств нечувствительных к ЭМИ

Средства сброса части или всех энергии ЭМИ на входе в устройство

Как средства защиты от ЭМИ на АФАР радары накладывают «клетки Фарадея» отсекающей ЭМИ за пределами их частот. Для внутренней электроники применяются просто железные экраны.

Кроме этого может быть использован разрядник, как средство сброса энергии сразу за антенной.

Средства размыкания цепей при возникновении сильных индукционных токов

Для размыкания цепей внутренней электроники при возникновении сильных индукционных токов от от ЭМИ используют

  • стабилитроны — полупроводниковые диоды рассчитанные на работу в режиме пробоя с резким повышением сопротивления;
  • варисторы обладают свойством резко уменьшать своё сопротивление с десятков и (или) тысяч Ом — до единиц Ом при увеличении приложенного к нему напряжения выше пороговой величины.

Электронные устройства, нечувствительные к ЭМИ

Часть электронных устройств неуязвимы для ЭМИ и применяются как средства борьбы с ним:

  • Использование оптического кабеля с передачей сигналом лазером как можно скорее по схеме электроники от части устройств, потенциально подверженных ЭМИ.
  • Использование LTCC-технологий в связи с тем, что разогревом силикатной платы с проводниками внутри до 1000С от индукционных токов или как-то иначе такое устройство невозможно повредить, так как собственно в ходе такого «совместного обжига» LTCC-панель и была получена технологически. Следует иметь в виду, что это касается защиты от экстремального нагрева только антенн и проводников, реализованных в виде «дорожек на стеклянной печатной плате», которую из себя представляет LTCC-панель. Напаянные на панель чипы должны иметь защиту корпуса из металла и разрядники, стабилитроны и варисторы на входе сигнала от антенн.

Герб доминиона

Варианты

цифровая электроника вычислительная техника встраиваемые системы

Как сделать генератор электромагнитных импульсов своими руками

Вас достала слишком громкая музыка соседей или просто хотите сделать какой-нибудь интересный электротехнический прибор самостоятельно? Тогда можете попробовать собрать простой и компактный генератор электромагнитных импульсов, который способен выводить из строя электронные устройства поблизости.

В данном материале будет показано, как собрать элементарный генератор ЭМИ, используя обычно доступные элементы: паяльник, припой, одноразовый фотоаппарат, \кнопка-переключатель, изолированный толстый медный кабель, проволока с эмалированным покрытием, и сильноточный фиксируемый переключатель. Представленный генератор будет не слишком сильным по мощности, поэтому у него может не получиться вывести из строя серьезную технику, но на простые электроприборы он повлиять в состоянии, поэтому данный проект следует рассматривать как учебный для новичков в электротехнике.

Припаяйте два изолированных медных кабеля к двум контактам конденсатора. Один конец этого кабеля подключите к сильноточному переключателю. Другой конец оставьте пока свободным.

Теперь нужно намотать нагрузочную катушку. Оберните проволоку с эмаль-покрытием от 7 до 15 раз вокруг круглого объекта диаметром 5 сантиметров. Сформировав катушку, оберните ее клейкой лентой для большей безопасности при ее эксплуатации, но оставьте два выступающих провода для подключения к клеммам. Используйте наждачную бумагу или острое лезвие, чтобы удалить эмалевое покрытие с концов проволоки. Один конец соедините с выводом конденсатора, а другой с сильноточным переключателем.

Теперь можно сказать, что простейший генератор электромагнитных импульсов готов. Чтобы зарядить его, просто подключите батарею к соответствующим контактам на печатной плате с конденсатором. Поднесите к катушке какое-нибудь портативное электронное устройство, которое не жалко, и нажмите переключатель.

Помните, что не стоит удерживать нажатой кнопку заряда при генерации ЭМИ, иначе вы можете повредить цепь.

ЭМИ (электромагнитный импульс) довольно популярны в мире научной фантастики. Было бы здорово иметь свою собственную установку для ЭМИ пушки? Так и подумал, перед тем, как начал сборку электромагнитного излучателя своими руками.

Я хотел сделать ЭМИ генератор, который был бы портативным, и его можно было бы спрятать под рукавами. Если у вас есть правильные компоненты, вы можете собрать её в кратчайшие сроки.

ВНИМАНИЕ: Этот проект не для детей. Если говорить серьезно, вы можете получишь шок

Конденсаторы действительно мощные и поэтому, пожалуйста, будьте осторожны при обращении со схемой

Если говорить серьезно, вы можете получишь шок. Конденсаторы действительно мощные и поэтому, пожалуйста, будьте осторожны при обращении со схемой.

Остановка счетчика электроэнергии своими руками

Новые книги Шпионские штучки: Новое и лучшее схем для радиолюбителей: Шпионские штучки и не только 2-е издание Arduino для изобретателей. Обучение электронике на 10 занимательных проектах Конструируем роботов. Руководство для начинающих Компьютер в лаборатории радиолюбителя Радиоконструктор 3 и 4 Шпионские штучки и защита от них. Сборник 19 книг Занимательная электроника и электротехника для начинающих и не только Arduino для начинающих: самый простой пошаговый самоучитель Радиоконструктор 1 Обновления Подавитель сотовой связи большой мощности. Глушилка для электросчётчика. Подписка на тему Сообщить другу Версия для печати.

Генеральный штаб в Советской России и СССР

Что такое электромагнитное излучение?

Классификация электромагнитного излучения базируется на спектре частот, длине волн и поляризации. К поляризованному ЭМИ относится то, где колебания волн осуществляются в одной плоскости. Длина волн может колебаться от 5 пикометров (пм) до десятков километров.

Электрические заряды, находящиеся в движении с ускорением, формируют излучение. Распространение волн происходит как в плотной среде, так и в вакуумной, но скорость распространения ЭМИ в веществе ниже.

Источники электромагнитных излучений

  • линии электропередач;
  • электротранспорт;
  • лифты;
  • мобильные, телевизионные и радиовышки;
  • трансформаторы.

Низкий уровень излучений характерен для компьютерных дисплеев, бытовых приборов, систем снабжения электроэнергией. Жесткие ионизирующие волны излучает медицинская диагностическая техника (рентген, компьютерная томография). Излучение обладает свойствами волн и частиц, которые хорошо демонстрируют явление фотоэффекта, где энергия каждого электрона определяется частотой, а не интенсивностью падающего света.

Электромагнитное поле производится движущимися зарядами и токами. Теория электромагнитного поля, созданная Максвеллом, поясняет электромагнитную индукцию: изменение магнитного поля в одной точке пространства влечет образование электрического поля и наоборот. Эти порождающие друг друга поля сливаются в единое электромагнитное поле (ЭМП).

Наличие в поле замкнутого проводника приводит к появлению индукционного тока. При максимальной амплитуде тока и направленном вверх векторе скорости положительных зарядов во всех точках антенны заряд, приходящийся на единицу ее длины, равен нулю.

Польза и вред

В чем заключается вредное воздействие статического электричества в промышленности?

Заряды статического электричества могут возникнуть при соприкосновении или трении твердых материалов, при размельчении или пересыпании однородных и разнородных непроводящих материалов, при разбрызгивании диэлектрических жидкостей, при транспортировке сыпучих веществ и жидкостей по трубопроводам и др.

Вредное воздействие статического электричества проявляется в возможности пожаров и взрывов от электростатических зарядов, технологических помех, нарушающих нормальный ход того или иного технологического процесса, физиологического воздействия на организм человека.

Человек может подвергаться длительному процессу электризации при контактировании с различного рода предметами, выполненными из материалов с высокими диэлектрическими свойствами. К числу подобных источников электризации относятся: полы, ковры, ковровые дорожки из синтетических и других электронепроводящих материалов.

Действие статического электричества на человека смертельной опасности не представляет, поскольку сила тока составляет небольшую величину. Искровый разряд статического электричества человек ощущает, как толчок или судорогу. При внезапном уколе может возникнуть испуг, и вследствие рефлекторных движений человек может сделать непроизвольно движения, приводящие к падению с высоты, попаданию в неогражденные части машин и др. Длительное воздействие статического электричества неблагоприятно отражается на состоянии здоровья.

Вызываемые статическим электричеством неприятные ощущения могут явиться этиологическим фактором неврастенического синдрома, головной боли, плохого сна, раздражительности, неприятных ощущений в области сердца и т. д.

Полезная теория

Элементная база РЭС весьма чувствительна к энергетическим перегрузкам, и поток электромагнитной энергии достаточно высокой плотности способен выжечь полупроводниковые переходы, полностью или частично нарушив их нормальное функционирование. Низкочастотное ЭМО создает электромагнитное импульсное

излучение на частотах ниже 1 МГц, высокочастотное ЭМО воздействует излучением СВЧ-диапазона – как импульсным, так и непрерывным. Низкочастотное ЭМО воздействует на объект через наводки на проводную инфраструктуру, включая телефонные линии, кабели внешнего питания, подачи и съема информации. Высокочастотное ЭМО напрямую проникает в радиоэлектронную аппаратуру объекта через его антенную систему. Помимо воздействия на РЭС противника, высокочастотное ЭМО может также влиять на кожные покровы и внутренние органы человека. При этом в результате их нагрева в организме возможны хромосомные и генетические изменения, активация и дезактивация вирусов, трансформация иммунологических и поведенческих реакций.

Главным техническим средством получения мощных электромагнитных импульсов, составляющих основу низкочастотного ЭМО, является генератор с взрывным сжатием магнитного поля. Другим потенциальным типом источника низкочастотной магнитной энергии высокого уровня может быть магнитодинамический генератор, приводимый в действие с помощью ракетного топлива или взрывчатого вещества. При реализации высокочастотного ЭМО в качестве генератора мощного СВЧ-излучения могут использоваться такие электронные приборы, как широкополосные магнетроны и клистроны, работающие в миллиметровом диапазоне гиротроны, генераторы с виртуальным катодом (виркаторы), использующие сантиметровый диапазон, лазеры на свободных электронах и широкополосные плазменно-лучевые генераторы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector