§ 63. состав, строение и происхождение солнечной системы
Содержание:
- Содержание
- Почему у астильбы скручиваются листья
- Место Земли в Солнечной системе
- Понимание Солнечной системы
- Что такое внутренняя Солнечная система
- Атмосфера и гидросфера Земли — условия существования будущей жизни (4,3–3,8 млрд лет назад)
- Настройки прицела Плащаницы
- Интересные факты
- История термина
- Продолжительность года
- Строение Cолнечной системы
- Внутреннее строение Луны
- Исследование
- Планеты — гиганты
Содержание
Почему у астильбы скручиваются листья
Место Земли в Солнечной системе
Более удачного положения, чем то, что занимает Земля, придумать невозможно. Участок нашей Галактики довольно спокойный. Солнце обеспечивает постоянное, равномерное свечение. Оно выделяет ровно столько тепла, излучения и энергии, сколько требуется для зарождения и развития жизни.
Саму же Землю словно продумали заранее:
- Идеальный состав атмосферы, и геологическое строение.
- Нужный фон радиации и температурный режим.
- Наличие воды с её удивительными свойствами.
Присутствие Луны, именно такой массы и на таком расстоянии, как это требуется. Есть ещё очень много совпадений, имеющих решающее значение для благоприятной жизни на планете. И нарушение практически любого из них сделало бы маловероятным возникновение и существование жизни.
Понимание Солнечной системы
Последовательность планет рядом с нами.
За малым исключением, до эпохи современной астрономии лишь немногие люди или цивилизации понимали, что такое Солнечная система. Подавляющее большинство астрономических систем постулировало, что Земля — неподвижный объект, вокруг которого вращаются все известные небесные объекты. Кроме того, она существенно отличалась от других звездных объектов, которые считались эфирными или божественными по своей природе.
Хотя во времена античного и средневекового периода были некоторые греческие, арабские и азиатские астрономы, которые верили, что Вселенная гелиоцентрична (то есть что Земля и другие тела вращаются вокруг Солнца), только когда Николай Коперник разработал математическую предиктивную модель гелиоцентрической системы в 16 веке, эта идея получила широкое распространение.
Галилей (1564 – 1642) частенько показывал людям, как пользоваться телескопом и наблюдать за небом на площади Сан-Марко в Венеции. Учтите, в те времена не было адаптивной оптики.
В течение 17 века ученые вроде Галилео Галилея, Иоганна Кеплера и Исаака Ньютона разработали понимание физики, которое постепенно привело к принятию того, что Земля вращается вокруг Солнца. Развитие теорий вроде гравитации также привело к осознанию того, что другие планеты подчиняются тем же физическим законам, что и Земля.
Широкое распространение телескопов также привело к революции в астрономии. После открытия Галилеем спутников Юпитера в 1610 году, Кристиан Гюйгенс обнаружил, что и Сатурн обладает лунами в 1655 году. Также были обнаружены новые планеты (Уран и Нептун), кометы (комета Галлея) и пояс астероидов.
К 19 веку три наблюдения, сделанные тремя отдельными астрономами, определили истинную природу Солнечной системы и ее место во Вселенной. Первое сделал в 1839 году немецкий астроном Фридрих Бессель, успешно измеривший кажущийся сдвиг в позиции звезды, созданный движением Земли вокруг Солнца (звездный параллакс). Это не только подтвердило гелиоцентрическую моедль, но и показало гигантское расстояние между Солнцем и звездами.
В 1859 году Роберт Бунзен и Густав Кирхгоф (немецкие химик и физик) использовали недавно изобретенный спектроскоп для определения спектральной сигнатуры Солнца. Они обнаружили, что Солнце состоит из тех же элементов, что существуют на Земле, тем самым доказав, что твердь земная и твердь небесная сделаны из одной материи.
Наглядное сравнение планет.
Затем отец Анджело Секки — итальянский астроном и директор Папского Григорианского университета — сравнил спектральную сигнатуру Солнца с сигнатурами других звезд и обнаружил, что те практически идентичны. Это убедительно показало, что наше Солнце состоит из тех же материалов, что и любая другая звезда во Вселенной.
Дальнейшие очевидные расхождения в орбитах внешних планет привели американского астронома Персиваля Лоуэлла к выводу, что за пределами Нептуна должна лежат «планета Х». После его смерти обсерватория Лоуэлла провела необходимые исследования, которые в конечном итоге привели Клайда Томбо к открытию Плутона в 1930 году.
В 1992 году астрономы Дэвид К. Джевитт из Гавайского университета и Джейн Луу из Массачусетского технологического института обнаружили транснептуновый объект (ТНО), известный как (15760) 1992 QB1. Он вошел в новую популяцию, известную как пояс Койпера, о котором долгое время говорили астрономы и который должен лежать на краю Солнечной системы.
Дальнейшее исследование пояса Койпера на рубеже веков привело к дополнительным открытиям. Открытие Эриды и другие «плутоидов» Майком Брауном, Чадом Трухильо, Давидом Рабиновичем и другими астрономами привело к суровой дискуссии между Международным астрономическим союзом и некоторыми астрономами на тему обозначения планет, больших и малых.
Что такое внутренняя Солнечная система
Во внутренней Солнечной системе мы находим «внутренние планеты» — Меркурий, Венеру, Землю и Марс — которые названы так потому, что вращаются ближе к Солнцу. В дополнение к своей близости, эти планеты имеют ряд ключевых отличий от других планет в Солнечной системе.
Для начала: внутренние планеты твердые и землистые, состоят в основном из силикатов и металлов, тогда как внешние планеты — газовые гиганты. Внутренние планеты расположены ближе друг к другу, чем их внешние коллеги. Радиус всей это области меньше дистанции между орбитами Юпитера и Сатурна.
Как правило, внутренние планеты меньше и плотнее своих коллег и обладают небольшим числом лун. Внешние планеты имеют десятки спутников и кольца из льда и камня.
Внутренние планеты земной группы состоят по большей части из огнеупорных минералов вроде силикатов, которые образуют их кору и мантию, и металлов — железа и никеля — которые лежат в ядре. Три из четырех внутренних планет (Венера, Земля и Марс) имеют достаточно существенные атмосферы, чтобы формировать погоду. Все усеяны ударными кратерами и обладают поверхностной тектоникой, рифтовыми долинами и вулканами.
Из внутренних планет Меркурий является ближайшей к нашему Солнцу и наименьшей из планет земной группы. Его магнитное поле составляет лишь 1% от земного, и очень тонкая атмосфера диктует температуру в 430 градусов по Цельсию днем и -187 ночью, поскольку атмосфера не может удержать тепло. Он не имеет спутников и состоит по большей части из железа и никеля. Меркурий — одна из самых плотных планет Солнечной системы.
Венера, которая по размерам примерно с Землю, имеет плотную токсичную атмосферу, которая удерживает тепло и делает планету самой горячей в Солнечной системе. Ее атмосфера состоит на 96% из углекислого газа, а также азота и нескольких других газов. Плотные облака в пределах атмосферы Венеры состоят из серной кислоты и других агрессивных соединений, с малым добавлением воды. Большая часть поверхности Венеры отмечена вулканами и глубокими каньонами — самый большой свыше 6400 километров длиной.
Земля является третьей внутренней планетой и лучше всех изученной. Из четырех планет земной группы Земля самая крупная и единственная обладает жидкой водой, необходимой для жизни. Атмосфера Земли защищает планету от опасного излучения и помогает удержать ценный солнечный свет и тепло под оболочкой, что также необходимо для существования жизни.
Как и другие планеты земной группы, Земля имеет каменистую поверхность с горами и каньонами и тяжелое металлическое ядро. Атмосфера Земли содержит водяной пар, который помогает смягчить суточные температуры. Как и Меркурий, Земля обладает внутренним магнитным полем. А наша Луна, единственный спутник, состоит из смеси различных пород и минералов.
Восход на Марсе прекрасен.
Марс — четвертая и последняя внутренняя планета, известная также как «Красная планета», благодаря окисленным богатым железом материалам, лежащим на поверхности планеты. Марс также обладает набором интереснейших свойств поверхности. На планете расположилась крупнейшая в Солнечной системе гора (Олимп) высотой в 21 229 метров над поверхностью и гигантский каньон Valles Marineris в 4000 км длиной и глубиной до 7 км.
Большая часть поверхности Марса очень стара и заполнена кратерами, но есть и геологически новые зоны. На марсианских полюсах расположены полярные шапки, которые уменьшаются в размерах во время марсианских весны и лета. Марс менее плотный, чем Земля, и располагает слабым магнитным полем, что говорит скорее о твердом ядре, нежели о жидком.
Тонкая атмосфера Марса привела некоторых астрономов к мысли о том, что на поверхности планеты существовала жидкая вода, только испарилась в космос. Планета имеет две небольшие луны — Фобос и Деймос.
Атмосфера и гидросфера Земли — условия существования будущей жизни (4,3–3,8 млрд лет назад)
В начале земной эволюции базальтовый слой земной коры образовывался в недрах планеты и расплавленная магма поднималась вверх по разломам коры. Она содержала газы. При высоких температурах и давлении химические реакции протекали бурно. Их продуктами становились такие привычные нам земные вещества, как азот, водород, монооксид углерода (угарный газ), углекислый газ и вода. Можно сказать, что первичная атмосфера вышла из земных недр.
Первичная атмосфера не была похожа на современную. Древние вулканы выбрасывали облака газов, и атмосфера представляла собой их смесь с парами воды, соляной, борной и плавиковой кислот
Масса Земли к тому времени была уже достаточно большой, чтобы удерживать атмосферные газы за счет сил притяжения.
Однако первичная атмосфера не была похожа на современную.
Древние вулканы выбрасывали облака газов. Более легкие из них (водород и гелий) поднимались вверх, достигая открытого космоса, а тяжелые удерживались земным притяжением у поверхности планеты. Из этих газов 4,3–3,8 млрд лет назад и сложилась первичная атмосфера Земли. Конечно, то, что выдыхали вулканы, сильно отличалось от сегодняшней азотно-кислородной атмосферы. Юная планета была окружена облаками азота, аммиака, углекислого газа, метана, водорода, инертных (благородных) газов, а также парами воды, соляной, борной и плавиковой кислот. Только кислорода в первичной атмосфере почти не было — его содержание в «воздухе» древней планеты составляло менее 0,001% от нынешней концентрации.
В те времена практически весь кислород был связан в различных химических соединениях и не существовал в свободном состоянии. Ядовитая, непригодная для дыхания атмосфера также не обладала и озоновым слоем, который защищает сегодня все живое от космической радиации. Однако постепенно она обогащалась продуктами сгорания метеоритов.
Так планета Земля выглядит из космоса
Современная атмосфера Земли совсем не похожа на древнюю: ее главные составляющие — азот (3/4 объема), кислород (1/5) и благородный газ аргон (около 1/100). В ней существенно меньше углекислого газа и водяных паров, а другие летучие элементы представлены в крайне малых, как говорят химики, следовых количествах.
Медленное охлаждение Земли и формирование первичной атмосферы помогли появиться и водной оболочке планеты — гидросфере. Как мы знаем, в древней атмосфере было очень много водяного пара, который вырывался из недр вместе с расплавленной лавой. Конденсируясь, он выпадал в виде дождей. На земной поверхности собирались потоки воды, они сливались вместе и заполняли углубления. Так возникали древнейшие озера. Поверхность Земли была еще слишком горячей, жидкость закипала, и столбы пара снова поднимались в атмосферу. Такая циркуляция воды помогала остудить поверхность планеты. Со временем озера становились все крупнее, превращаясь в океаны. Новые потоки воды несли в них частицы горных пород, продукты выветривания и растворенные вещества с земной поверхности. Последние представляли собой смесь солей. Таким образом морская вода обретала свой вкус — именно такой, какой мы знаем сегодня.
Описанная схема формирования первичной атмосферы и гидросферы выглядит последовательной и логичной, но ведь никто из ученых не мог непосредственно наблюдать за теми процессами, которые протекали около 4 млрд лет назад. Мы имеем дело с гипотезами, основанными на косвенных данных. В них пока еще немало противоречий и загадок. Наука знает очень немного про первый период земной эволюции.
Первоначально жизнь имела довольно странные формы. Рыб еще не было, зато под водой обитали многоногие черви жутковатого вида и закованные в панцири трилобиты
Земля — единственная среди планет Солнечной системы, где существует развитая гидросфера. Воды на нашей планете так много, что она занимает примерно 2/3 ее поверхности, образуя Мировой океан. Верхние слои коры, земную поверхность, нижние слои атмосферы и гидросферу иногда объединяют вместе и называют географической (ландшафтной) оболочкой.
Поделиться ссылкой
Настройки прицела Плащаницы
Интересные факты
• В прошлом Земля считалась центром Вселенной. 2000 лет древние астрономы считали, что Земля статична, а другие небесные тела путешествуют по круговым орбитам вокруг нее. К такому мнению они пришли наблюдая очевидное движение Солнца и планет при наблюдении с Земли. В 1543 году Коперник опубликовал свою гелиоцентрическую модель Солнечной системы, в которой Солнце находится в центре нашей Солнечной системы.
• Земля это единственная планета в системе, которую не назвали в честь мифологических богов или богинь (остальные семь планет в Солнечной системе были названы в честь римских богов или богинь). Имеется ввиду пять видимых невооруженным глазом планет: Меркурий, Венера, Марс, Юпитер и Сатурн. Все тот же подход с именами древнеримских богов был использован после открытия Урана и Нептуна. Само же слово «Земля» происходит от старого английского слова «ertha» означающее почву.
• Земля является самой плотной планетой в Солнечной системе. Плотность Земли отличается в каждом слое планеты (ядро, например, является более плотным, чем земная кора). Средняя плотность планеты составляет около 5,52 грамма на кубический сантиметр.
• Гравитационное взаимодействие между Землей и Луной вызывает приливы на Земле. Считается, что Луна заблокирована приливными силами Земли, поэтому ее период вращения совпадает с Земным и она обращена к нашей планете всегда одной и той же стороной.
• Вращение Земли постепенно замедляется. Замедление вращения Земли происходит очень медленно, примерно 17 миллисекунд на сто лет. Но, в конечном итоге, это удлиняет день. Тем не менее, этому процессу потребуется около 140 миллионов лет для того, чтобы увеличить сутки с 24 до 25 часов.
• Атмосфера Земли на 78% состоит из азота, 21% кислорода, а также следовых количеств других газов, включая аргон и углекислый газ.
• Значительная часть земного кислорода была образована в процессе фотосинтеза.
• Земля имеет очень мощное магнитное поле. Это поле защищает планету от воздействия солнечного ветра и, как считают ученые, является результатом никель-железного ядра планеты и его быстрого вращения.
• Земля имеет озоновый слой, который защищает ее от вредного солнечного излучения. Эта оболочка представляет собой особый тип кислорода, который поглощает большую часть мощных ультрафиолетовых лучей.
• 70% поверхности Земли покрыто водой, остальную часть представляют континенты и острова, на которых также присутствует множество озер и других источников воды.
• Считается, что первая жизнь на Земле возникла в океане посредством процесса абиогенеза — естественного процесса, при котором жизнь вырастает из неживой материи в виде простого органического соединения.
• Вода Земли первоначально могла находится внутри планеты. Но, с течением времени, вода была доставлена на поверхность в результате вулканической активности планеты.
• Земля имеет относительно небольшое число видимых кратеров по сравнению с другими твердыми телами в Солнечной системе. Это происходит потому, что Земля является геологически активной, на ней происходят такие процессы, как тектоника и эрозия, которые могут менять ее поверхность.
История термина
История карликовых планет связана с Плутоном. Это небесное тело было открыто в 1930 г., и его сразу же признали полноценной планетой. Однако уже в 1992 г. последовали новые открытия. В районе орбиты Плутона стали открывать всё новые и новые объекты. В конце концов стало ясно, что в Солнечной системе существует целый пояс астероидов, который назвали поясом Койпера (до этого астрономам был известен только один пояс астероидов, находящийся между Юпитером и Марсом). Плутон же был лишь одним из множества объектов этого пояса. Более того, в поясе Койпера была найдена Эрида – объект, который был тяжелее Плутона. Стало ясно, что Плутон никак не может считаться полноценной планетой, но и «понижать» его статус до астероида было бы странным. Поэтому в 2006 г.астрономы ввели понятие «карликовой планеты» для Плутона и ему подобных объектов.
Продолжительность года
Строение Cолнечной системы
Солнечная система
Вокруг Солнца в непрерывном движении находятся 8 планет (раньше их было 9, но сейчас ученые относят Плутон к карликовым планетам) по эллиптичным орбитам. Планеты размещаются в таком порядке от Солнца: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун. Все они делятся на две группы: планеты земной группы (Меркурий, Венера, Земля, Марс) и планеты-гиганты (Юпитер, Сатурн, Уран и Нептун). Планеты земной группы имеют твердую поверхность, мало спутников (всего 3) и они сравнительно небольшие. Планеты-гиганты не имеют четкой поверхности, отличаются большими размерами и большим количеством спутников (сейчас открыто примерно 160).
Между Марсом и Юпитером находится пояс астероидов, который состоит из более, чем 500 000 астероидов. Самые большие из них имеют названия: Церера (диаметр 960 км), Паллада (диаметр 608 км), Веста (диаметр 555 км) и др. За орбитой Нептуна находится пояс карликовых планет – пояс Койпера, в состав которого входит и Плутон. Модель показывает размещение пояса астероидов и пояса Койпера.
Также в Солнечной системе существуют еще один вид небесных тел — кометы, которые находятся под пристальным вниманием благодаря тому, что имеют хвост. Обычно кометы не включают в модель
Плоская, светящаяся комета состоит из ядра, комы и хвоста. Ядро, с которого образуется хвост, преимущественно состоит изо льда. Хвост у кометы образовывается с ее приближением к Солнцу благодаря действию Солнечного ветра. Направлен он в сторону, противоположную от Солнца. Самая известная комета – комета Галлея, которую наблюдают уже несколько тысячелетий с периодом 76 лет.
Внутреннее строение Луны
Литосфера Луны (внешняя сфера Луны)
Спутник Земли — Луна также имеет сходное с ней строение. Изучение ее глубин с помощью лунотрясений и при измерении физических полей показало, что она в целом однороднее Земли.
Особенностью глубинной структуры Луны является ее разделение примерно пополам на “жесткую” холодную внешнюю сферу и “пластичную” разогретую внутреннюю область, залегающую на глубинах 800—1000 км. Между внешней и внутренней оболочками выделяется переходная зона. Внешняя оболочка по аналогии с Землей названа литосферой.
Внутреннее строение Луны принципиально почти не отличается от земного.
Литосфера Луны очень жестка и до такой степени добротна, что вызванные в ней сейсмические сигналы фиксируются длительное время. Скачок в скорости прохождения сейсмических волн устанавливается на разделе коры Луны и ее мантии и объясняется изменением состава горных пород.
Мощность коры варьирует в широких пределах от 150 км на ее обратной стороне до 40 км на полюсах. В Море Дождей расчетная мощность составляет 60 км.
Мантия Луны (внутренняя сфера Луны)
В отличие от Земли, где скорость сейсмических волн в целом растет с глубиной, на Луне рост скоростей отмечается лишь в пределах коры. В мантии Луны скорость сейсмических волн не увеличивается.
В переходной зоне, расположенной глубже 500—600 км, резко изменяются физические свойства пород и уменьшается энергия сейсмических волн. Здесь размещаются очаги приливных лунотрясений.
Внутренняя сфера Луны характеризуется резким ослаблением амплитуды поперечных сейсмических волн. Тем, что поперечные волны в ней не проходят, она напоминает ядро Земли и находится, вероятно, в жидком состоянии. Однако на Луне она названа астеносферой, потому что давление здесь такое же, как в астеносфере Земли на глубинах 100—150 км.
Астеносфера Земли по толщине составляет 1/30—1/60 ее радиуса, а астеносфера Луны в 10 раз мощнее и составляет половину лунного радиуса.
В центре Луны располагается железо-сульфидное расплавленное ядро радиусом 200—400 км.
Исследование
Расстояние, сила тяжести, атмосферные условия (чрезвычайно низкое или чрезвычайно высокое атмосферное давление ) и неизвестные факторы делают разведку дорогостоящей и рискованной. Это требует космических зондов для раннего исследования планетных поверхностей. Многие стационарные зонды имеют ограниченный диапазон исследований и, как правило, выживают на внеземных поверхностях в течение короткого периода времени, однако мобильные зонды (роверы) обследовали большие площади поверхности. Миссии по возврату образцов позволяют ученым изучать внеземные поверхностные материалы на Земле без необходимости отправлять пилотируемую миссию, однако, как правило, это возможно только для объектов с низкой гравитацией и атмосферой.
Прошлые миссии
Первой внеземной планетной поверхностью, которая была исследована, была поверхность Луны с помощью Луны-2 в 1959 году. Первым и единственным исследованием внеземной поверхности человеком была Луна, программа Аполлона включала первую лунную походку 20 июля 1969 года и успешное возвращение внеземной поверхности. образцы на Землю. Венера-7 была первой посадкой зонда на другой планете 15 декабря 1970 года. Марс-3 «мягко приземлился» и получил данные с Марса 22 августа 1972 года, первым марсоходом на Марсе был Mars Pathfinder в 1997 году, марсоход Mars Exploration Rover изучает поверхность красной планеты с 2004 года. NEAR Shoemaker первым совершил мягкую посадку на астероид — 433 Эрос в феврале 2001 года, а Хаябуса первым вернул образцы из 25143 Итокава 13 июня 2010 года. Гюйгенс мягко приземлился и вернулся. данные с Титана 14 января 2005 г.
Было много неудачных попыток, совсем недавно — Фобос-Грунт , миссия по возврату образцов, направленная на исследование поверхности Фобоса .
Будущие миссии
В мае 2011 года НАСА объявило о миссии OSIRIS-REx по возврату образцов к астероиду 101955 Бенну , запуск которой ожидается в 2016 году. Другие цели для посадки и возврата образцов включают 162173 Рюгу ( Хаябуса2 в 2018 году) и 101955 Бенну ( OSIRIS-REx в 2020 году).
Планеты — гиганты
Существуют четыре газовых гиганта, располагающихся за орбитой Марса: Юпитер, Сатурн, Уран, Нептун. Они находятся во внешней Солнечной системе. Отличаются своей массивностью и газовым составом.
Планеты солнечной системы, масштаб не соблюден
Юпитер
Пятая по счёту от Солнца и крупнейшая планета нашей системы. Радиус её – 69912 км, она в 19 раз больше Земли и всего в 10 раз меньше Солнца. Год на Юпитере не самый долгий в солнечной системе, длится 4333 земных суток (неполных 12 лет). Его же собственные сутки имеют продолжительность около 10 земных часов. Точный состав поверхности планеты пока определить не удалось, однако известно, что криптон, аргон и ксенон имеются на Юпитере в гораздо больших количествах, чем на Солнце.
Юпитер, снимок зонда Вояджер-1
Существует мнение, что один из четырёх газовых гигантов на самом деле – несостоявшаяся звезда. В пользу этой теории говорит и самое большое количество спутников, которых у Юпитера много – целых 67. Чтобы представить себе их поведение на орбите планеты, нужна достаточно точная и чёткая модель солнечной системы. Самые крупные из них – Каллисто, Ганимед, Ио и Европа. При этом Ганимед является крупнейшим спутником планет во всей солнечной системе, радиус его составляет 2634 км, что на 8% превышает размер Меркурия, самой маленькой планеты нашей системы. Ио отличается тем, что является одним из трёх имеющих атмосферу спутников.
Сатурн
Вторая по размерам планета и шестая по счёту в Солнечной системе. В сравнении с остальными планетами, наиболее схожа с Солнцем составом химических элементов. Радиус поверхности равен 57350 км, год составляет 10 759 суток (почти 30 земных лет). Сутки здесь длятся немногим дольше, чем на Юпитере – 10,5 земных часов. Количеством спутников он ненамного отстал от своего соседа – 62 против 67. Самым крупным спутником Сатурна является Титан, так же, как и Ио, отличающийся наличием атмосферы. Немного меньше него по размеру, но от этого не менее известные – Энцелад, Рея, Диона, Тефия, Япет и Мимас. Именно эти спутники являются объектами для наиболее частого наблюдения, и потому можно сказать, что они наиболее изучены в сравнении с остальными.
Сатурн, снимок космического аппарата Кассини в 2007 году
Долгое время кольца на Сатурне считались уникальным явлением, присущим только ему. Лишь недавно было установлено, что кольца имеются у всех газовых гигантов, но у остальных они не настолько явно видны. Их происхождение до сих пор не установлено, хотя существует несколько гипотез о том, как они появились. Кроме того, совсем недавно было обнаружено, что неким подобием колец обладает и Рея, один из спутников шестой планеты.
Уран
Седьмая по счету и третья по размеру планета, радиус которой составляет 25267 км. Справедливо считается самой холодной планетой среди остальных, температура достигает -224 градусов по Цельсию. Продолжительность года — 30 685 суток в земном исчислении (почти 84 года), сутки же ненамного меньше земных – 17 с небольшим часов. Из-за сильной наклонности оси планеты, иногда создается впечатление, будто она не вращается, как остальные небесные тела нашей системы, а катится, подобно шару. Это может наблюдать любой, кого интересует астрономия, геометрическая модель солнечной системы наглядно продемонстрирует этот эффект.
Уран — снимок Вояджера-2 в 1986 году
Спутников у него гораздо меньше, чем у соседнего Сатурна, всего 27. Наиболее известны Титания, Ариэль, Оберон, Умбриэль и Миранда. Они не настолько крупны, как спутники.
Примечательно, что ведя наблюдения за Ураном в свой телескоп, астроном Уильям Гершель сначала не понял, что он наблюдает за планетой, будучи уверен, что он видит комету.
Нептун
Размером восьмая планета солнечной системы очень близка к своему ближайшему соседу, Урану. Радиус Нептуна равняется 24547 км. Год на планете равняется 60 190 суток (приблизительно 164 земных года). В атмосфере зафиксированы самые сильные ветра в нашей системе, скорость которых достигает 260 м/с.
Нептун, вид с Вояджера-2
По сравнению с остальными планетами-гигантами спутников у него совсем мало – всего 14. Самые известные из них – Тритон, третий в солнечной системе спутник, имеющий атмосферу, Протей и Нереида.
Примечательно, что это – единственная из планет, которая была открыта не благодаря наблюдениям, а с помощью математических расчётов.