Где расположена земля в млечном пути?
Содержание:
- Столкновение Млечного Пути с галактикой Андромеды
- Млечный путь – наш дом родной
- Строение Галактики
- Галерея изображений
- Солнечная система в Млечном пути
- Ссылки
- Взрывы в галактике Млечный Путь
- Технические характеристики
- Перемещение в рамках галактики.
- Где находится Солнце?
- Происшествия
- Что будет с Землей после столкновения галактик?
- Перечень наиболее интересных фактов
- Расположение галактики Андромеды
Столкновение Млечного Пути с галактикой Андромеды
Причина, по которой столкновение происходит на несколько миллиардов лет раньше запланированного срока, заключается в том, что галактика Андромеды намного больше, чем кажется. Яркий звездный диск этой галактики имеет диаметр около 120 000 световых лет, что немного больше Млечного Пути. В последние годы исследования Андромеды с использованием гигантских телескопов выявили обширную популяцию звезд, в результате чего ее общий диаметр увеличился примерно до 200 000 световых лет. Однако это ничто по сравнению с последним исследованием.
Николас Ленер из Университета Нотр-Дам и его коллеги определили, что гало Андромеды — ее внешняя оболочка из тонкого горячего газа, похожая на «галактическую атмосферу» — удалено на 2 миллиона световых лет от ее центра. Команда проекта AMIGA также выявила, что оболочка разделена на два слоя: внутренний, где бушуют взрывы сверхновых, и внешний, который намного более спокойный.
Млечный путь – наш дом родной
Наша галактика является загадкой для многих из нас. Конечно, всем известно, много фактов о ней, но я могу гарантировать вам, что есть еще куча загадок, найти ответы на которые еще только предстоит.
Сегодня, когда мы имеем высокоточные приборы наблюдения и знаем, что эта полоса является галактикой, в которой находится наша солнечная система. Называется она Млечный путь. Так как мы расположены внутри него или точнее на его периферии, то определить форму Галактики довольно сложно. Тем не менее, считается, что наша галактика похожа на Галактику Андромеды и имеет форму спирали с перемычкой. До 2005 года считалось, что наша галактика является просто спиральной, но наблюдения космического телескопа им. Спитцера подтвердили наличие перемычки.
Маяк на фоне нашего звездного острова
Строение Галактики
Общая форма Галактики напоминает диск диаметром 80 000 световых лет (или 25 000 парсек), с приблизительной толщиной в 1000 световых лет. В галактическом центре находится балдж (от англ. Bulge – утолщение), это старые звезды, движущиеся по вытянутым орбитам, вокруг сверхмассивной черной дыры, известной как Стрелец А. Протяженность нашего балджа составляет 8 000 парсек.
Спиральная форма
Так как Млечный путь имеет форму спирали, то в плоскости диска находятся спиральные рукава. Из-за расположения нашей Солнечной системы, нам трудно наблюдать форму рукавов. Мы находимся в 8 500 парсек от галактического центра, на внутреннем крае рукава Ориона. Последние наблюдения сообщают, что есть еще 2 рукава, начинающиеся у перемычки во внутренней части галактики.
И еще пара рукавов имеется во внутренней части, все это создает четырехрукавную структуру. Диск Галактики погружен в сферу, называемую Галактическое гало, которое распространяется за пределы галактики на 5 000 — 10 000 световых лет. Состоит гало из горячего газа, звезд и темной материи.
Галерея изображений
По приблизительным оценкам в нашей Галактике находится 400 миллиардов звезд, масса составляет 5×10*11 масс Солнца. А основная масса материи сконцентрирована не в звездах и межзвездном газе, а в темной материи составляющей гало.
Как и у многих других, в центре Млечного Пути находится сверхмассивная черная дыра Стрелец A. Она расположилась в 26000 световых лет от Земли и имеет размер 22,5 млн километров.
Млечный путь в горах
Солнечная система в Млечном пути
Научные наблюдения определили, что Солнце движется вокруг центра Галактики со скоростью 220-240 км/с, делая 1 оборот за 200 миллионов лет. А это означает, что за все время существования, наше Солнце сделало не более 30 оборотов. В то же время Солнечная система расположена в коротационном круге. То есть скорость вращения Солнца вокруг центра Галактики совпадает со скоростью волны уплотнения спирального рукава. В рукавах происходят бурные процессы, сопровождаемые мощными излучениями, от которых нет спасения. А расположение Солнца позволяет избежать этого пагубного влияния.
Наш звездный остров
Однако с Земли мы видим только крошечную часть от общего количества звезд Млечного пути. Наша галактика является спиральной и возможно имеет перемычку.
Текущая оценка общего количества звезд, лежит в пределах от 200 до 400 миллиардов. Таковы лишь некоторые факты.
Наш Млечный путь
Представленные фотографии Млечного пути, вы можете сделать самостоятельно, используя обычный зеркальный фотоаппарат и приложив немного времени и терпения.
Наш общий дом вдали от городов и засветки
Ссылки
- Ресурсы World of Tanks
- Танковедение
- Тема на официальном форуме
- Записи боев на T-34-2
Техника Китая
Лёгкие танки | I Renault NC-31 • II Vickers Mk. E Type B • III Type 2597 Chi-Ha • IV M5A1 Stuart • VI 59-16 • VI Type 64 • VII Type 62 • VII WZ-131 • VIII WZ-132 • VIII M41D • IX WZ-132A • X WZ-132-1 |
Средние танки | V Type T-34 • VI Type 58 • VII T-34-1 • VIII Type 59 • VIII T-34-2 • VIII T-34-3 • VIII 59-Patton • VIII 122 TM • VIII Type 59 G • IX WZ-120 • X • X 121B |
Тяжёлые танки | VII IS-2 • VIII WZ-111 • VIII WZ-111 Alpine Tiger • VIII • VIII • IX WZ-111 model 1-4 • X • X WZ-111 model 5A • X WZ-111 Qilin |
ПТ-САУ | II T-26G FT • III M3G FT • IV SU-76G FT • V 60G FT • VI WZ-131G FT • VII T-34-2G FT • VIII WZ-111-1G FT • VIII WZ-120-1G FT • IX WZ-111G FT • X WZ-113G FT |
Средние танки
Техника СССР | III Т-29 • IV А-32 • IV Т-28Э с Ф-30 • IV Т-28 • V Матильда IV • V Т-34 экранированный • V Т-34 • VI А-43 • VI Т-34-85М • VI Т-34-85 Rudy • VI М4-А2 Шерман Лозы • VI Т-34-85 • VII А-44 • VII КВ-13 • VII Т-43 • VIII Объект 416 • VIII Т-54 первый образец • VIII Т-44-100 (К) • VIII Т-44-100 (Р) • VIII Т-44-100 (У) • VIII СТГ • VIII СТГ Гвардеец • VIII Объект 274а • VIII Т-44 • IX Объект 430 Вариант II • IX Объект 430 • IX Т-54 • X Объект 140 • X Объект 907 • X Т-22 ср. • X К-91 • X Объект 430У • X Т-62А |
Техника Германии | III Großtraktor — Krupp • III Pz.Kpfw. IV Ausf. A • III Pz.Kpfw. S35 739 (f) • IV Pz.Kpfw. III Ausf. J • IV Pz.Kpfw. IV Ausf. D • IV VK 20.01 (D) • V Pz.Kpfw. III Ausf. K • V Turán III prototípus • V Pz.Kpfw. III/IV • V Pz.Kpfw. IV hydrostat. • V Pz.Kpfw. V/IV • V Pz.Kpfw. V/IV Alpha • V Pz.Kpfw. IV Ausf. H • V Pz.Kpfw. T 25 • V VK 30.01 (H) • VI Pz.Kpfw. IV Schmalturm • VI VK 30.01 (D) • VI VK 30.02 (M) • VII Panther/M10 • VII Panther • VII VK 30.02 (D) • VIII Panther mit 8,8 cm L/71 • VIII Panzer 58 • VIII Schwarzpanzer 58 • VIII Panzer 58 Mutz • VIII M48A2 Räumpanzer • VIII Indien-Panzer • VIII Panther II • IX E 50 • IX T 55A • IX Kampfpanzer 50 t • IX Kunze Panzer • IX Leopard Prototyp A • X E 50 Ausf. M • X Leopard 1 |
Техника США | II T2 Medium Tank • III M2 Medium Tank • IV T6 Medium • IV M3 Lee • V M4 Improved • V M4A2E4 Sherman • V M4A1 Sherman • V Ram II • VI M4A3E8 Fury • VI M4A3E8 Thunderbolt VII • VI M4A3E8 Sherman • VI M4A3E2 Sherman Jumbo • VII T26E3 Eagle 7 • VII T20 • VII T23E3 • VIII T25 Pilot Number 1 • VIII TL-1 LPC • VIII T42 • VIII M46 Patton KR • VIII M26 Pershing • VIII T26E4 SuperPershing • VIII T69 • VIII T95E2 • IX M46 Patton • X M48A5 Patton • X M60 • X T95E6 |
Техника Франции | III D2 • III Somua S35 • IV SARL 42 • V Renault G1 • VI Bretagne Panther • VI M4A1 FL 10 • VIII Bat.-Châtillon Bourrasque • VIII Lorraine 40 t • VIII AMX Chasseur de chars • VIII M4A1 Revalorisé • IX AMX 30 1er prototype • IX Char Futur 4 • IX Bat.-Châtillon 25 t AP • X Bat.-Châtillon 25 t • X AMX 30 B |
Техника Великобритании | I Vickers Medium Mk. I • II Vickers Medium Mk. II • III Vickers Medium Mk. III • IV Matilda • IV Grant • IV AC 1 Sentinel • V Cavalier • V Valiant • V Sherman III • V Matilda Black Prince • VI Sherman Firefly • VI Cromwell • VI AC 4 Experimental • VI Cromwell B • VI Sherman VC Firefly • VII Comet • VIII Centurion Mk. I • VIII FV4202 • VIII Chieftain/T95 • VIII Centurion Mk. 5/1 RAAC • VIII Chimera • IX Centurion Mk. 7/1 • X Centurion Action X |
Техника Китая | V Type T-34 • VI Type 58 • VII T-34-1 • VIII Type 59 • VIII T-34-2 • VIII T-34-3 • VIII 59-Patton • VIII 122 TM • VIII Type 59 G • IX WZ-120 • X • X 121B |
Техника Японии | II Chi-Ni • II Type 89 I-Go/Chi-Ro • IV Type 1 Chi-He • V Type 3 Chi-Nu • V Type 3 Chi-Nu Kai • VI Type 4 Chi-To • VII Type 5 Chi-Ri • VIII STA-1 • VIII STA-2 • IX Type 61 • X STB-1 |
Техника Чехословакии | IV ST vz. 39 • V Škoda T 24 • VI Škoda T 40 • VI Škoda T 25 • VII Konštrukta T-34/100 • VIII TVP VTU Koncept • VIII Škoda T 27 • IX Škoda T 50 • X TVP T 50/51 |
Техника Швеции | IV Lago • V Strv m/42 • VI Strv m/42-57 Alt A.2 • VI Strv 74 • VII Leo • VIII Strv 81 • VIII Primo Victoria • VIII Lansen C • VIII UDES 14 Alt 5 • IX UDES 16 • X UDES 15/16 |
Техника Польша | V 25TP KSUST II • V DS PZInż • VI Pudel • VI 40TP Habicha • VI T-34-85 Rudy • VI B.U.G.I. • VII CS-44 • VIII CS-52 LIS • VIII CS-53 • IX CS-59 • X CS-63 |
Техника Италии | II M14/41 • III M15/42 • IV P26/40 • V P.43 • VI P.43 bis • VII P.43 ter • VIII Progetto M35 mod. 46 • VIII P.44 Pantera • IX Prototipo Standard B • X Progetto M40 mod. 65 • X Carro da Combattimento 45 t |
Взрывы в галактике Млечный Путь
Как отмечают авторы нового исследования, опубликованного в журнале Astronomy and Astrophysics, им удалось показать, что 6 миллиардов лет назад планеты подвергались многим взрывным событиям, а сила некоторых из них вполне могла стать причиной массового вымирания. Отметим, что исследователи исключили периферийные области Млечного Пути, в которых из-за высокой скорости звездообразования было относительно мало планет.
Гамма-всплески (Gamma-Ray Bursts, GRBs) – масштабные выбросы гамма-излучения, длительность которых составляет от нескольких долей секунды до нескольких минут. Считается, что на просторах Вселенной они происходят практически ежедневно. Известно также, что гамма-всплески происходят на огромных расстояниях от Земли – у границ наблюдаемой Вселенной. Если попытаться описать гамма-всплески совсем простыми словами, то ими ученые называют самые мощные из космических взрывов, высвобождающих столько энергии, сколько Солнце выделило бы за десять миллиардов лет.
Взрывы сверхновых звезд знаменуют собой отнюдь не рождение звезды, а ее гибель.
Сегодня мы знаем, что и вспышки сверхновых, и гамма-всплески связаны с жизненным циклом звезд и, в частности, с их смертью. Так, когда звезда намного более массивная, чем Солнце, достигает конца своей жизни, она взрывается – именно этот взрыв ученые называют взрывом сверхновой. Гамма-всплески, с другой стороны, представляют собой интенсивную вспышку высокоэнергетического излучения, испускаемого, когда очень массивная и быстро вращающаяся звезда умирает, или когда две нейтронные звезды, или нейтронная звезда и черная дыра (оба являются остатками массивных звезд) сливаются воедино.
«Сверхновые чаще встречаются в регионах звездообразования, где образуются массивные звезды», – объясняют авторы научной работы. Гамма-всплески, с другой стороны, могут наблюдаться в звездообразующих областях, слабо поглощенных тяжелыми элементами – как правило массивные звезды в таких областях теряют меньшую массу в течение своей жизни из-за звездного ветра. Звездным ветром ученые называют постоянно происходящий процесс, который приводит к снижению массы звезды.
Чтобы понять, как эти события распределяются внутри нашей галактики, исследователи начали с модели, которая описывает эволюцию Млечного Пути. Эта модель предсказывает, что внутренние области галактики, в отличие от периферийных, быстро сформировались на ранних этапах ее истории. Так как со временем скорость звездообразования уменьшалась в центре и постепенно увеличивалась на периферии, первичный газ водорода и гелия быстро обогащался более тяжелыми элементами (кислородом, углеродом, азотом) в центре Млечного Пути, в то время как на периферии он обогащался более постепенно.
Гамма-всплески, по мнению ученых, могли стать причиной массовых вымираний на Земле 445 миллионов лет назад.
Энергия, выделяемая гамма-всплесками и взрывом сверхновых звезд, огромна. Сверхновая в полосе высоких энергий выделяет столько же энергии, сколько Млечный Путь, содержащий сотни миллиардов звезд, испускает за несколько часов. А гамма-всплеск за 10 секунд испускает столько энергии, сколько наша галактика накапливает за столетие.
И хотя гамма-всплески являются гораздо более редкими событиями, чем вспышки сверхновых, они способны вызывать массовое вымирание с больших расстояний. Например, воздействие на такую планету, как Земля, было бы катастрофическим. Некоторые исследования предполагают, что гамма-излучение, испускаемое в пределах 3300 световых лет от Земли, разрушит озоновый слой в атмосфере: без этой защиты планета будет подвергаться воздействию ультрафиолетового излучения Солнца, что точно может стать причиной вымирания почти всех форм жизни на поверхности.
Млечный Путь хранит в себе множество тайн.
По этим причинам несколько исследований предположили, что первое из пяти массовых вымираний, которые затронули Землю, были вызвано гамма-всплесками. Что касается «недавнего» прошлого, то исследование показывает, что за последние 500 миллионов лет Млечный Путь стал намного безопаснее, чем в более ранние эпохи, причем периферийные области были более стерилизованы смертоносными гамма-всплесками, а центральные, в пределах 6500 световых лет от центра галактики, в основном подвергались воздействию сверхновых. Так что самое худшее, кажется, позади.
Технические характеристики
Перемещение в рамках галактики.
Движение Солнечной системы в галактике было открыто англо-немецким астрономом Уильямом Гершелем. Он определил, что ход Солнца направлен к звезде Маасим, или Лямбде в Геркулесе (со скоростью, равной 20 км/с). Современные расчеты всего на десять градусов отличаются от расчетов Уильяма Гершеля. Это пекулярное, или общее движение. Также происходит движение солнечной системы в галактике, которое астрономы наименовали переносным. Солнце, вместе с ближайшими звездами, которые обращаются вокруг галактического центра, устремлено к созвездию Лебедя (со скоростью, равной 200 – 250 км/с)
Звезды, пыль и газ вращаются с разной стремительностью. Это зависит от их местоположения и удаленности от центра. Типичным для спиральных скоплений является то, что и светила, расположенные ближе к ядру, и более удаленные объекты вращаются с примерно одинаковой орбитальной скоростью. Но в Млечном Пути объекты, чьи орбиты приближены к центру вращаются медленнее, чем те, что удалены. Солнце вращается по орбите, имеющей форму почти правильной окружности. Скорость составляет 828000 километров в час по данным, опубликованным в 2009 году. Полный виток вокруг центра диска совершается примерно за 230 миллионов лет, что является галактическим годом.
Вдобавок к орбитальному вращению, происходят также колебания в вертикальном направлении в плоскости Млечного Пути. Пересечение этой плоскости совершается один раз в 30 миллионов лет. Это означает, что Солнце меняет местоположение из северной в южную часть Млечного Пути и наоборот. Определено также, что в данный момент Солнце располагается в северной полусфере (20-25 парсек от плоскости диска). В настоящий момент совершается прохождение Местного межзвездного облака (ММО). Система вошла в него примерно 50 — 150 тысяч лет тому назад, и по подсчетам ученых выйдет из его пределов через 20 тысяч лет.
Где находится Солнце?
Положение Солнца в галактике Млечный путь
В 50-х годах прошлого века учёным удалось составить картину распределения
облаков ионизированного водорода, находящихся в галактической окрестности Солнца. Выяснилось, что существуют по крайней мере три участка, которые
можно было бы отождествить со спиральными рукавами Млечного Пути. Один из них, ближайший к нам, учёные назвали рукавом Ориона-Лебедя. Более далёкий от
нас и, соответственно, близкий к центру Галактики назван рукавом Стрельца-Киля, а периферийный — рукавом Персея.
Но исследуемая галактическая окрестность ограничена:
межзвездная пыль поглощает свет далеких звёзд и водорода, так что понять дальнейший рисунок спиральных ветвей становится невозможным.
Определить положение Солнца внутри Галактики позволило изучение близких цефеи́д — переменных звёзд, пульсирующих благодаря внутренним
физическим процессам, изменяющим их блеск. Изменения блеска происходят с определенным периодом: чем период больше, тем выше светимость цефеи́ды, а значит
и энергия, выделяемая звездой в единицу времени. А по ней можно определить и расстояние до звезды. Первопроходцем здесь был американский астрофизик Харлоу
Ше́пли. Одним из объектов его интереса стали шаровы́е звёздные скопления, настолько плотные, что их сердцевина сливается в сплошное сияние. Наиболее
богатая шаровы́ми скоплениями область расположена в направлении зодиакального созвездия Стрельца. Известны они и в других галактиках, причём эти скопления
всегда концентрируются вблизи галактических ядер. Если предположить, что законы для Вселенной едины, можно сделать вывод, что подобным образом должна быть
устроена и наша Галактика. Ше́пли отыскал в её шаровых скоплениях цефеи́ды и измерил расстояние до них.
Оказалось, что Солнце расположено вовсе не в центре Млечного
Пути, а на его окраине, можно сказать, в звёздной провинции, на расстоянии 25 тысяч световых лет от центра. Так, второй раз после Коперника было разве́нчано
представление о нашем особом привилегированном положении во Вселенной. Солнце расположено в плоскости нашей Галактики и удалено от её центра на 8 кпк и от
плоскости Галактики примерно на 25 пк. В области Галактики, где расположено наше Солнце, звёздная плотность составляет 0,12 звёзд на пк3.
Происшествия
Незаконные вооружённые формирования начали использовать его при проведении терактов. Осетинские журналисты полагают, что и к грузинским спецслужбам, и к боевикам ВСС могла попасть через американскую сторону, которая официально закупает эти винтовки, газета «Известия» в качестве вариантов маршрутов поставки называет также страны среднего и ближнего Востока. В частности, на видеоплёнке, предоставленной американскими журналистами, у одного из террористов, захвативших школу в Беслане видна в руках ВСС
5 июня 2009 года из винтовки «Винторез» был убит министр внутренних дел Дагестана Адильгирей Магомедтагиро.
Что будет с Землей после столкновения галактик?
В нынешнем виде столкновение Млечного Пути и Андромеды не представляет для нас никакой опасности. Но что будет, когда галактики сблизятся максимально? Обе галактики будут притягиваться друг к другу до тех пор, пока черные дыры, находящиеся в их центрах, в конечном итоге сольются в одну. Как только это произойдет, наша Солнечная система станет частью совершенно другой галактики – эллиптической.
Эксперты считают, что, несмотря на столь масштабное событие, Земля все-таки выживет. Вместе с остальной Солнечной системой. Ученые предполагают, что наша планета практически не пострадает от этого межгалактического коллапса, так как обе галактики имеют очень много свободного пространства. Тем не менее с Земли наблюдать за событием будет очень интересно.
Если, конечно, жизнь к тому моменту на ней еще сохранится. А то к этому времени Солнце уже может поглотить Землю.
Перечень наиболее интересных фактов
Мы живем на планете и думаем, что Земля равноправный член Солнечной системы. Реальность такова, что масса центральной звезды составляет 99,8% от массы Солнечной системы. И большая часть, от оставшихся 0,2% приходит на Юпитер. Таким образом, масса Земли составляет сотые доли массы Солнечной системы.
Солнце на 74% состоит из водорода, и на 24% гелия. Оставшиеся 2% включает в себя небольшое количество железа, никеля, кислорода. Иными словами, Солнечная система в основном состоит из водорода.
Мы знаем, что существуют удивительно большие и яркие звезды, например Сириус или Бетельгейзе. Но они находятся невероятно далеко. Наше собственное светило является относительно яркой звездой. Если бы вы могли взять 50 ближайших звезд в радиусе 17 световых лет от Земли, то она будет 4-й по яркости звездой.
Его диаметр в 109 раз больше Земного, внутри него могли бы поместиться 1300 тысяч Земель. Но существуют гораздо большие звезды, чей диаметр почти достиг бы орбиты Сатурна, если бы звезда была помещена внутрь Солнечной системы.
Астрономы считают, что наша звезда образовалось около 4590 миллионов лет назад. Примерно через 5 миллиардов лет оно войдет в стадию красного гиганта, и раздуется, затем, сбросив внешние слои, превратится в белый карлик.
Хотя наше светило и выглядит как горящий огненный шар, но на самом деле, имеет внутреннюю структуру поделенную на слои. Видимая поверхность, называется фотосфера, она нагрета до температуры около 6000 градусов по Кельвину. Под ней находится зона конвекции, где тепло медленно движется от центра к поверхности, а охлажденное звездное вещество падает вниз. Эта область начинается на расстоянии 70% радиуса. Под зоной конвекции находится радиационный пояс. В этой зоне, тепло передается через излучение. Ядро простирается от центра на расстояние в 0,2 солнечных радиусов. Это место, где температура достигает 13,6 млн градусов Кельвина, и молекулы водорода сливаются в гелий.
Солнце на самом деле медленно нагревается. Оно становится на 10% ярче каждый миллиард лет. В течение всего миллиарда лет, жар будет настолько сильным, что жидкая вода не сможет существовать на поверхности Земли. Жизнь на Земле, исчезнет навсегда. Бактерии смогут жить под землей, но поверхность планеты будет выжженной и необитаемой. Через 7 миллиардов лет оно превратится в красного гиганта, и прежде чем оно расширится, Солнце притянет к себе Землю и уничтожает всю планету.
В отличие от планет, Солнце это огромная сфера из водорода. Из-за этого, различные части вращаются с разной скоростью. Вы можете видеть, насколько быстро вращается поверхность, путем отслеживания движения пятен по поверхности. Вращение на экваторе занимает 25 дней, в то время как на полюсах, полный оборот может занять 36 дней.
Поверхность имеет температуру 6000 градусов Кельвина. Но это гораздо меньше, чем температура атмосферы звезды. Над поверхностью имеется область атмосферы, — называемая хромосферой, ее температура может достигать 100,000 К. Еще более далекие области, называемые короной, достигают температуры 1 млн. К.
Самый известный космический корабль, посланный для наблюдений, запущен в декабре 1995 года и называется SOHO. SOHO постоянно наблюдает за нашим светилом. В 2006 году были запущены два аппарата миссии STEREO. Эти два корабля были разработаны, чтобы наблюдать за активностью с двух разных точек зрения, это дает трехмерные модели нашей звезды, и позволяет астрономам более точно прогнозировать космическую погоду.
Расположение галактики Андромеды
Относится она к местной группе галактик. В эту группу также входят Млечный Путь и Треугольник. Из всех она, кстати, самая большая. С точки зрения астрономии, расположена она в созвездии Андромеды. На расстоянии 2,52 млн световых лет от планеты Земля. Это близкий сосед нашей галактики. Который, к тому же, превышает её по размеру.
Наблюдение Андромеды
Удивительно, но мы можем наблюдать эту галактику без помощи телескопа с Земли. Разумеется, увидим мы её как небольшое пятно. А так, согласитесь, сложно представить себе и определить её огромный размер.
Наверное, вас интересует вопрос: как найти и узнать туманность на небе самостоятельно? Здесь ничего сложно нет. Достаточно хотя бы знать немного о звёздах на небе. Для начала, необходимо найти в северном полушарии созвездие Кассиопея. Оно напоминает широкую букву W. Чуть ниже будет видна линия из трёх ярких звёзд. Из средней, называемой Мирах, нужно вверх провести прямую. Тогда станет заметно небольшое пятно. Это и будет искомая Андромеда. Между прочим, мы видим испускаемое свечение два, а то и два с половиной миллиона лет назад. По крайней мере, так утверждают учёные.
Андромеда относительно созвездию Кассиопея
Лучшее время для наблюдения галактики Андромеды
Для того, чтобы увидеть Андромеду с Земли, есть несколько важных моментов
Во-первых, важно выбрать время. Самым подходящим считается ночь в августе и сентябре, а также вечера с октября по декабрь
Потому что именно в это время галактика расположена особенно высоко. В остальное время происходит большое поглощение света атмосферой. Во-вторых, нужно чтобы небо было чистое и прозрачное. Это обеспечит лучший обзор. И так можно детальнее рассмотреть объекты на нём. И, в-третьих, большой проблемой для наблюдений станет яркость городов. Освещённость улиц, яркие рекламные щиты и подобное не позволяют в полном объёме увидеть что-то на небе. Поэтому, выбирайте правильное место и время. И тогда все получится!