Топ-10 аэс по мощности
Содержание:
- Российская атомная энергетика в других странах
- Какой арбалет лучше
- [править] Развитие атомной энергетики
- Принцип работы АЭС
- Атомные электростанции России
- Несколько фактов об атомных реакторах…
- Безопасность
- Страницы
- Атомная энергетика после аварии на Чернобыльской АЭС
- Строительство АЭС России
- Порядок избрания и прекращения полномочий
- Типы ядерных реакторов
- Примечания
- Литература
- Строительство реакторов
- Преимущества и недостатки использования АЭС
Российская атомная энергетика в других странах
Сегодня Россия располагает технологией атомной энергетики полного цикла. Это значит, что на территории РФ могут добывать урановую руду, преобразовывать ее в урановое топливо, «с нуля» создавать атомные станции, включая разработку и конструирование всех деталей АЭС и перерабатывать уже использованное ядерное топливо.
Российские АЭС в мире зарекомендовали себя как работоспособные и безопасные атомные станции. Многие страны, не имея на своих территориях нужных заводов, заказывают российским физикам-ядерщикам проектирование и строительство атомных энергоблоков. АЭС России на карте других стран – это 80 ядерных реакторов, 30 из которых уже строятся в данный момент. Еще 52 реактора только планируется построить. Международное атомное сотрудничество в России налажено с Китаем, Египтом, Индией, Словакией, Турцией, Чехией и многими другими странами. Международный атомный бизнес – это не только новые атомные станции России на карте других стран, — например, российские специалисты конструируют детали ядерных реакторов, помогают вводить их в эксплуатацию, обучают иностранный персонал работе на атомных станциях, оказывают помощь в утилизации уже отработанного ядерного топлива. Станции, которые конструирует и строит Россия – АЭС безопасные и долговечные, работающие с применением новых компьютерных технологий. Все АЭС России, построенные в других странах, соответствуют требованиям МАГАТЭ (Международного агентства по атомной энергетике).
Какой арбалет лучше
Рейтинг, составленный нашей командой, не носит рекламного характера. Называя лучших, мы опирались на сухие факты, а также следовали принципу, что главное слово в выборе остается за большинством. Ограниченность информации не позволила нам рассмотреть всех претендентов, возможно наиболее интересных.
Самыми лучшими арбалетами 2021 года мы считаем:
- Блочные – Barnett Ghost-420, сочетание легкости, балансировки, мощности;
- Рекурсивные – Yarrow X-Ray, простота и практичность;
- Подводные – JBL Reaper 100, гарантия обильного улова.
Согласно поправкам к закону «Об оружии» с 30 января 2021 года на территории Российской Федерации разрешена охота с применением луков, арбалетов, сила дуг которых не превосходит 27 и 43 кг соответственно.
[править] Развитие атомной энергетики
Двадцатый век стал временем освоения ядерной физики.
Двадцатый век стал временем освоения ядерной физики. В 1939 году ученые мира уже использовали практические и теоритические открытия в области атомной физики, что позволяло им выдвинуть программу исследований в этом направлении. В ходе многочисленных исследований ученые выявили, что можно разложить атом урана на две части, что позволяет освободить большое количество энергии и в процессе разложения выделяются нейтроны, расщепляющие другие атомы урана и вызывающие цепную ядерную реакцию. Ядерная реакция разделения урана эффективна и превосходит самые сильные химические реакции. Эти открытия произвели в научном мире настоящий фурор, ведь теперь можно было проникать в атом и овладевать его энергией.
Первое получение атомной энергии
Впервые ядерную энергию выработали в 1951 году в штате Айдахо, США. Там ученые построили ядерный реактор мощностью 100 киловатт. В 1954 году в СССР была построена первая атомная электростанция в городе Обнинске мощностью 5 МВт. Источником электроэнергии служило расщепление ядер урана. После этих событий атомная энергетика начала активно развиваться и в других странах. В 1956 году в Великобритании заработала АЭС «Калдер Холл-1» мощностью в 50 МВт. В 1957 году запустили АЭС Шиппингпорт в США мощностью 60 МВт. В 1959 году близ Авиньона во Франции открылась станция Маркуль мощностью в 37 Мвт. В СССР в 1964 году были запущены первые блоки Белоярской и Нововоронежской АЭС мощностью в 100 и 240 МВт соответственно. Итак, К 1964 г. суммарная мощность АЭС в мире выросла до 5 млн кВт. В мае 1970 года началось строительство Чернобыльской АЭС. В 1973 году, был запущен первый высокомощный блок Ленинградской АЭС мощностью в 1000 МВт. Годом ранее свою работу начала атомная электростанция в городе Шевченко (ныне Актау). Уже к 1986 г. в мире работали на АЭС 365 энергоблоков суммарной установленной мощностью 253 млн.кВт. Практически за 20 лет мощность АЭС увеличилась в 50 раз. Причинами такой высокой активности внедрения атомной энергетики в жизнь человечества стали: низкая стоимость возведения АЭС, рост потребления электроэнергии и стоимости энергоносителей, торговое эмбарго на поставки энергоносителей из арабских стран и др. Однако, 80-х годах спрос на электроэнергию стабилизировался, также как и стоимость природного топлива, а стоимость постройки АЭС, наоборот, увеличилась. К тому же серьезный удар развитию атомной энергетики был нанесен тяжелой аварией на АЭС «Три Майл Айленд» в США в 1979 г., и страшная авария на Чернобыльской АЭС в 1986 году, которые заставили людей задуматься о безопасности атомных электростанций. Во многих странах были приостановлены программы развития атомной энергетики, а в ряде стран вообще отказались от намеченных ранее планов по её развитию. Несмотря на это, к 2000 г. на АЭС, работающих в 37 странах мира, вырабатывалось 16 % мирового производства электроэнергии. Всевозможные усилия, предпринятые по улучшению безопасности АЭС, привели к тому, что доверие общества к атомной энергетике восстановилось. В условиях экологического кризиса, с которым мировое сообщество вошло в ХХI век, атомная энергетика может внести значительный вклад в обеспечение надежного электроснабжения, снижение выбросов в окружающую среду парниковых газов и загрязняющих веществ. В настоящее время активно развивают атомную энергетику страны с высокой её долей в общем объёме вырабатываемой электроэнергии, включая США, Японию, Южную Корею, Финляндию. Франция, переориентировав электроэнергетику страны на атомную и продолжая её развивать, с успехом решила энергетическую проблему на многие десятилетия. Доля АЭС в производстве электроэнергии в этой стране достигает 80 %. Развивающиеся страны с незначительной ещё долей ядерной генерации электроэнергии высокими темпами строят АЭС.
Принцип работы АЭС
Принцип работы атомной электростанции основан на действии ядерного (иногда называемого атомным) реактора – специальной объёмной конструкции, в которой происходит реакция расщепления атомов с выделением энергии.
Существуют различные виды ядерных реакторов:
- PHWR (также имеет название «pressurised heavy water reactor» — «тяжеловодный ядерный реактор»), используемый преимущественно на территории Канады и в городах Индии. В его основе используется вода, формула которой — D2O. Она выполняет функцию как теплоносителя, так и замедлителя нейтронов. Коэффициент полезного действия близится к 29%;
- ВВЭР (водо-водяной энергетический реактор). В настоящее время ВВЭР эксплуатируют только в СНГ, в частности, модель ВВЭР-100. Реактор имеет КПД равный 33%;
- GCR, AGR (графитоводный). Жидкость, содержащаяся в таком реакторе, выступает в роли теплоносителя. В данной конструкции замедлитель нейтронов — графит, отсюда и название. КПД составляет около 40%.
По принципу устройства реакторы также делят на:
- PWR (pressurised water reactor) – устроен так, что вода, находящаяся под определенным давлением, замедляет реакции и подает тепло;
- BWR (сконструирован таким образом, что пар и вода находятся в главной части устройства, не имея водяного контура);
- РБМК (канальный реактор, имеющий особенно большую мощность);
- БН (система работает за счет быстрого обмена нейтронами).
Устройство и структура атомной электростанции. Как работает АЭС?
Устройство АЭС
Типичная атомная электростанция состоит из блоков, внутри каждого из которых размещены различные технические приспособления. Самый значимый из таких блоков – комплекс с реакторным залом, обеспечивающий работоспособность всей АЭС. Он состоит из следующих устройств:
- реактора;
- бассейна (именно в нем хранят ядерное топливо);
- машины, перегружающие топливо;
- БЩУ (щит управления в блоках, с помощью него за процессом деления ядра могут наблюдать операторы).
Помимо прочего, имеется блок с бассейнами для отработанного топлива и специальные блоки, предназначенные для охлаждения (они называются градирнями). Кроме того, для охлаждения применяются распылительные бассейны и природные водоемы.
Принцип работы АЭС
На всех без исключения АЭС существует 3 этапа преобразования электрической энергии:
- ядерная с переходом в тепловую;
- тепловая, переходящая в механическую;
- механическая, преобразовывающаяся в электрическую.
Уран отдает нейтроны, вследствие чего происходит выделение тепла в огромных количествах. Горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. Поскольку эта вода находится под большим давлением, она остается в жидком состоянии(в современных реакторах типа ВВЭР около 160 атмосфер при температуре ~330 °C). В парогенераторе это тепло передается воде второго контура, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому закипает. Образовавшийся пар поступает на паровую турбину, вращающую электрогенератор, а затем в конденсатор, где пар охлаждают, он конденсируется и снова поступает в парогенератор. Конденсатор охлаждают водой из внешнего открытого источника воды (например, пруда-охладителя).
И первый и второй контур замкнуты, что снижает вероятность утечки радиации. Размеры конструкций первого контура минимизированы, что также снижает радиационные риски. Паровая турбина и конденсатор не взаимодействуют с водой первого контура, что облегчает ремонт и уменьшает количество радиоактивных отходов при демонтаже станции.
Атомные электростанции России
Балаковская АЭС
Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.
Балаковская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.
Ежегодно она вырабатывает более 30 миллиардов кВт•ч электроэнергии. В случае ввода в строй второй очереди, строительство которой было законсервировано в 1990-х, станция могла бы сравняться с самой мощной в Европе Запорожской АЭС.
Белоярская АЭС
Белоярская АЭС расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).
На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.
В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.
БН-600 сдан в эксплуатацию в апреле 1980 — первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.
БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.
Билибинская АЭС
Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.
Вырабатывает электрическую и тепловую энергию.
Калининская АЭС
Калининская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.
Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.
Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.
4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.
Кольская АЭС
Кольская АЭС расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.
Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции — 1760 МВт.
Курская АЭС
Курская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.
Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.
Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.
Мощность станции — 4000 МВт.
Ленинградская АЭС
Ленинградская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.
Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.
Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.
Мощность станции — 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт•ч.
Нововоронежская АЭС
Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.
На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.
Мощность станции (без учёта Нововоронежской АЭС-2) — 1440 МВт.
Ростовская АЭС
Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.
В 2001—2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС.
В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.
Смоленская АЭС
Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.
В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.
Несколько фактов об атомных реакторах…
Интересно, что один реактор АЭС строят не менее 3х лет! Для постройки реактора необходимо оборудование, которое работает на электрическом токе в 210 кило Ампер, что в миллион раз превышает силу тока, которая способна убить человека.
Одна обечайка (элемент конструкции) ядерного реактора весит 150 тонн. В одном реакторе таких элементов 6.
Водо-водяной реактор
Как работает АЭС в целом, мы уже выяснили, чтобы все «разложить по полочкам» посмотрим, как работает наиболее популярный водо-водяной ядерный реактор. Во всем мире сегодня используют водо-водяные реакторы поколения 3+. Они считаются самыми надежными и безопасными.
Все водо-водяные реакторы в мире за все годы их эксплуатации в сумме уже успели набрать более 1000 лет безаварийной работы и ни разу не давали серьезных отклонений.
Структура АЭС на водо-водяных реакторах, подразумевает, что между ТВЭЛами циркулирует дистиллированная вода, нагретая до 320 градусов. Чтобы не дать ей перейти в парообразное состояние ее держат под давлением в 160 атмосфер. Схема АЭС называет ее водой первого контура.
Нагретая вода попадает в парогенератор и отдает свое тепло воде второго контура, после чего снова «возвращается» в реактор. Внешне это выглядит так, что трубки воды первого контура соприкасаются с другими трубками – воды второго контура, они передают тепло друг другу, но воды не контактируют. Контактируют трубки.
Таким образом, исключена возможность попадания радиации в воду второго контура, которая будет далее участвовать в процессе добычи электричества.
То, как работают АЭС далее, уже хорошо известно — вода второго контура в парогенераторах превращается в пар, пар вращает турбину, а турбина приводит в движение электрогенератор, который вырабатывает электроэнергию.
Безопасность
Объекты использования атомной энергии (в том числе ядерные установки, пункты хранения ядерных материалов и радиоактивных веществ, пункты хранения радиоактивных отходов) в соответствии со статьёй 48.1 ГрК РФ относятся к особо опасным объектам.
Надзор за безопасностью российских АЭС осуществляет Ростехнадзор.
Охрана труда регламентируется следующими документами:
- Правила охраны труда при эксплуатации тепломеханического оборудования и тепловых сетей атомных станций ОАО «Концерн Энергоатом». СТО 1.1.1.02.001.0673-2006
Ядерная безопасность регламентируется следующими документами:
- Общие положения обеспечения безопасности атомных станций. НП-001-15
- Правила ядерной безопасности реакторных установок атомных станций. ПБЯ РУ АС-89 (ПНАЭ Г — 1 — 024 — 90)
Радиационная безопасность регламентируется следующими документами:
- Санитарные правила проектирования и эксплуатации атомных станций (СП АС-03)
- Основные правила обеспечения радиационной безопасности (ОСПОРБ-99/2010)
- Правила радиационной безопасности при эксплуатации атомных станций (ПРБ АС-99)
- Нормы радиационной безопасности (НРБ-99/2009)
- Федеральный закон «О санитарно-эпидемиологическом благополучии населения».
Страницы
Атомная энергетика после аварии на Чернобыльской АЭС
1986 год стал роковым для этой отрасли. Последствия техногенной катастрофы оказались настолько неожиданными для человечества, что естественным побуждением стало закрытие многих атомных станций. Количество АЭС во всем мире сократилось. Были остановлены строящиеся по проектам СССР не только отечественные станции, но и зарубежные.
- Горьковская АСТ (теплоцентраль);
- Крымская;
- Воронежская АСТ.
Список АЭС России, отмененных на этапе проектирования и подготовительных земляных работ:
- Архангельская;
- Волгоградская;
- Дальневосточная;
- Ивановская АСТ (теплоцентраль);
- Карельская АЭС и Карельская-2 АЭС;
- Краснодарская.
Строительство АЭС России
Сегодня активно ведется строительство АЭС в России. В РФ конструируют 10 новых энергоблоков, в том числе один плавучий ядерный реактор «Академик Ломоносов», который планируется запустить в ближайший год. В 2016 на плавучем ядерном реакторе начались швартовные испытания, закончить их планируют к октябрю 2017 года. Работать первая в мире плавучая атомная станция будет в городе Певек Чукотского автономного округа. Карта атомных станций России пополнится новыми реакторами на следующих АЭС: Балтийской, Белоярской-2 и Ростовской. На стадии строительства две АЭС России, которые впервые после распада Советского Союза строятся «с нуля» — это Нововоронежская АЭС-2 и Ленинградская АЭС-2. Все проектные, конструкторские и строительные работы ведутся при наблюдении ВАО АЭС.
ВАО АЭС – Всемирная ассоциация операторов АЭС. В этой организации состоят все страны мира, так или иначе эксплуатирующие атомную энергетику. Главная задача ВАО АЭС – обеспечение безопасности всех атомных станций мира. Представители этой ассоциации есть в каждой стране, в том числе и в РФ. Они проверяют атомные станции России на предмет безопасности и готовности к аварийным ситуациям. ВАО АЭС была основана в 1989 году в Лондоне, как реакция на Чернобыльскую катастрофу 1986 года.
Сегодня Россия находится на втором месте в мире по количеству строящихся энергоблоков. Опережает РФ только Китай, в котором на стадии строительства находятся 28 ядерных реакторов. На карте мировых АЭС Россия занимает далеко не первое место, но зато множество стран мира обязаны РФ постройкой местных атомных станций и вводом их в эксплуатацию.
Порядок избрания и прекращения полномочий
Требования, предъявляемые к кандидатам в президенты Туркмении:
- родившийся в Туркмении;
- владеющий туркменским языком;
- не моложе 40 лет;
- в течение предшествующих 15 лет постоянно проживающий в Туркмении;
- работающий в государственных органах, общественных организациях и отраслях народного хозяйства (статья 51 Конституции).
Президент избирается всеобщим прямым тайным голосованием сроком на семь лет (статья 52 Конституции). Количество президентских сроков не ограничено.
Полномочия президента Туркмении могут быть прекращены (статья 57 Конституции) в случае:
- невозможности выполнения им своих обязанностей по болезни. Меджлис на основании заключения создаваемой им независимой медицинской комиссии принимает решение о досрочном освобождении президента от должности. Такое решение принимается не менее чем двумя третями депутатов Меджлиса.
- В случае нарушения президентом Конституции и законов Меджлис может выразить недоверие президенту. Вопрос о недоверии может быть рассмотрен по требованию не менее чем двух третей депутатов Меджлиса. Решение о недоверии президенту принимается не менее чем тремя четвертями голосов депутатов Меджлиса. Вопрос о смещении президента с должности выносится на референдум.
Если президент по тем или иным причинам не может исполнять свои обязанности, впредь до избрания нового президента на основании решения Государственного совета безопасности на должность временно исполняющего обязанности президента Туркмении назначается один из заместителей председателя Кабинета Министров Туркмении. Выборы президента в этом случае должны быть проведены не позднее 60 дней со дня перехода его полномочий к временно исполняющему обязанности президента. Исполняющий обязанности президента не имеет права баллотироваться в президенты (статья 58).
Типы ядерных реакторов
То, как работает АЭС, зависит от того, как именно работает ее атомный реактор. Сегодня есть два основных типа реакторов, которые классифицируются по спектру нейронов: Реактор на медленных нейтронах, его также называют тепловым.
Для его работы используется 235й уран, который проходит стадии обогащения, создания урановых таблеток и т.д. Сегодня реакторов на медленных нейтронах подавляющее большинство. Реактор на быстрых нейтронах.
За этими реакторами будущее, т.к. работают они на уране-238, которого в природе пруд пруди и обогащать этот элемент не нужно. Минус таких реакторов только в очень больших затратах на проектирование, строительство и запуск. Сегодня реакторы на быстрых нейтронах работают только в России.
Теплоносителем в реакторах на быстрых нейтронах выступает ртуть, газ, натрий или свинец.
Реакторы на медленных нейтронах, которыми сегодня пользуются все АЭС мира, тоже бывают нескольких типов.
Организация МАГАТЭ (международное агентство по атомной энергетике) создало свою классификацию, которой пользуются в мировой атомной энергетике чаще всего. Так как принцип работы атомной станции во многом зависит от выбора теплоносителя и замедлителя, МАГАТЭ базировали свою классификацию на этих различиях.
- PWR (pressurized water reactors) — водо-водяной реактор (реактор с водой под давлением). В странах СНГ такие реакторы называют аббревиатурой ВВЭР. В качестве теплоносителя и замедлителя в них используется обычная вода. Водо-водяные реакторы самые распространенные в мире (около 62% от всех реакторов). Водо-водяные реакторы дешевы и удобны, т.к. вода не воспламеняется, не затвердевает, и ее использование относительно безопасно.
- BWR (boiling water reactor) — кипящий реактор или кипящий водо-водяной реактор. Принцип действия АЭС на таком реакторе очень похож на то, как работает АЭС на ВВЭР. Кипящий реактор также использует обычную воду, его особенность в только том, что пар генерируется сразу в активной зоне. В водо-водяном реакторе сначала нагревается вода, которая позже, спустя несколько этапов, переводится в пар, в кипящих реакторах тепло сразу отдается кипящей воде, которая мгновенно становится горячим паром.Кипящие реакторы достаточно распространены, их 20% от всех атомных реакторов мира.
- LWGR (light water graphite reactor) — графито-водный реактор, ГВР, ВРГ или уран-графитовый реактор. В качестве замедлителя в таком типе реактора используется графит, в качестве теплоносителя – обычная вода. Схема работы АЭС, запущенной впервые в мире, основывалась на графито-водном реакторе. Сегодня такие реакторы используют редко, большинство из них расположены в России.
- PHWR (pressurised heavy water reactor) — тяжеловодный реактор. В таких реакторах в качестве теплоносителя и замедлителя используется тяжелая вода (D2O), по-другому ее называют тяжеловодородной водой или оксидом дейтерия.
С химической точки зрения оксид дейтерия идеальный замедлитель и теплоноситель, т.к. ее атомы наиболее эффективно взаимодействуют с нейтронами урана по сравнению с другими веществами. Попросту говоря, свою задачу тяжелая вода выполняет с минимальными потерями и максимальным результатом. Однако ее производство стоит денег, в то время как обычную «легкую» и привычную для нас воду использовать куда проще.
Примечания
Литература
Строительство реакторов
Преимущества и недостатки использования АЭС
Потребление электроэнергии во всем мире постоянно возрастает. При этом рост потребления увеличивается более ускоренными темпами, чем выработка энергии, а практическое применение современных перспективных технических решений в данной области по многим причинам начнется через несколько лет. Решением данной проблемы становится совершенствование ядерной энергетики и возведение новых атомных электростанций. Можно выделить следующие преимущества эксплуатации атомных электростанций:
- Высокая энергоемкость используемого топливного ресурса. При полноценном выгорании один килограмм урана выделяет количество энергии, сопоставимое с результатом сжигания около 50 тонн нефти, либо вдвое больше тонн каменного угля
- Способность вторичного применения ресурса после переработки. Расщепленный уран, в отличие от отходов органического топлива, может быть повторно использован для выработки энергии. Дальнейшее развитие атомных электростанций предполагает полноценный переход на замкнутый цикл, что поможет обеспечить отсутствие образования каких-либо вредных отходов
- Атомная станция не способствует образованию парникового эффекта. Каждый день атомные электростанции помогают избежать эмиссии около 600 миллионов тонн углекислого газа. Действующие на территории России АЭС каждый год задерживают поступление в окружающую среду более 200 миллионов тонн углекислого газа
- Абсолютная независимость от местонахождения источников топлива. Большая удаленность атомной электростанции от месторождения урана никак не влияет на возможность ее функционирования. Энергетический эквивалент ядерного ресурса во много раз больше, в сравнении с органическим топливом, и расходы на его транспортировку минимальны
- Невысокая стоимость использования. Для большого числа стран выработка электроэнергии при помощи АЭС не затратнее, чем на других типах электростанций
Несмотря на большое количество положительных сторон эксплуатации атомных электростанций, существует несколько проблем. Основной недостаток заключается в тяжких последствиях аварийных ситуаций, для предотвращения которых электростанции оснащаются довольно сложными системами безопасности с большими запасами и резервированием. Таким образом обеспечивается исключение повреждения центрального внутреннего механизма даже при масштабной аварии.
Большой проблемой для эксплуатации АЭС также является их уничтожение после выработки ресурсов. Стоимость их ликвидации может достигать 20% от всех затрат на их сооружение. Кроме того, по техническим соображениям для атомных электростанций является нежелательным функционирование в маневренных режимах.
Первые атомные электростанции в мире позволили сделать большой шаг в усовершенствовании ядерной энергетики. В современных условиях в России около 17% электроэнергии вырабатывается именно при помощи АЭС. По причине выгоды эксплуатации АЭС многие страны приступают к строительству новых реакторов и рассматривают их как перспективный источник электроэнергии.