Первые атомные электростанции и их роль в развитии ядерной энергетики

Содержание:

История

Исторический обзор статистики строительства атомных электростанций

Впервые цепная реакция ядерного распада была осуществлена 2 декабря 1942 года в Чикагском университете с использованием урана в качестве топлива и графита в качестве замедлителя. Первая электроэнергия из энергии ядерного распада была получена 20 декабря 1951 года в Национальной лаборатории Айдахо с помощью реактора на быстрых нейтронах EBR-I (Experimental Breeder Reactor-I). Произведённая мощность составляла около 100 кВт.

9 мая 1954 года на ядерном реакторе в г. Обнинск была достигнута устойчивая цепная ядерная реакция. Реактор мощностью 5 МВт работал на обогащённом уране с графитом в качестве замедлителя, для охлаждения использовалась вода с обычным изотопным составом. 26 июня в 17:30 энергия, выработанная здесь, стала поступать в потребительскую электросеть Мосэнерго.

Военные корабли США — атомные крейсера «Бейнбридж» и «Лонг Бич», и первый в мире авианосец с ядерным реактором «Энтерпрайз», самое длинное в мире военное судно, в 1964 году во время рекордного кругосветного путешествия, в течение которого они преодолели 49,190 км за 65 дней без дозаправки

В декабре 1954 года в США вошла в строй первая атомная подводная лодка «Наутилус».

В 1956 году в Великобритании начала работу пятидесятимегаваттная АЭС «Calder Hall-1». Далее последовали в 1957 году АЭС Шиппингпорт в США — 60 МВт и в 1959 году АЭС Маркуль во Франции — 37 МВт. В 1958 начала выдавать электроэнергию первая очередь второй советской АЭС — Сибирской, мощностью 100 Мвт, полная проектная мощность которой составляла 600 Мвт. В 1959 году в СССР спущено на воду первое в мире невоенное атомное судно — ледокол «Ленин».

Ядерная энергетика, как новое направление в энергетике, получила признание на проходившей в Женеве в августе 1955 года 1-й Международной научно-технической конференции по мирному использованию атомной энергии, положившей начало международному сотрудничеству в области мирного использования ядерной энергии и ослабившей завесу секретности над ядерными исследованиями, существовавшей со времён Второй мировой войны.

В 1960-х годах в США происходил перевод ядерной энергетики на коммерческую основу. Первой коммерческой АЭС стала «Yankee Rowe» мощностью 250 МВТ, проработавшая с 1960 до 1992 года. Первой атомной станцией в США, строительство которой финансировалось из частных источников, стала АЭС Дрезден.

В СССР в 1964 году вступили в строй Белоярская АЭС (первый блок 100МВт) и Нововоронежская АЭС (первый блок 240МВт). В 1973 году на Ленинградской АЭС в городе Сосновый бор был запущен первый высокомощный энергоблок (1000 МВт). Энергия пущенного в 1972 году в Казахстане первого промышленного реактора на быстрых нейтронах (150 МВт) использовалась для производства электроэнергии и опреснения воды из Каспийского моря.

В начале 1970-х годов существовали видимые предпосылки для развития ядерной энергетики. Потребность в электроэнергии росла, гидроэнергетические ресурсы большинства развитых стран были практически полностью задействованы, соответственно росли цены на основные виды топлива. Ситуацию усугубляло введение эмбарго на поставки нефти арабскими странами в 1973–1974 годах. Предполагалось снижение стоимости строительства АЭС.

Тем не менее, к началу 1980-х годов обозначились серьёзные экономические трудности, причинами которых стали стабилизация спроса на электроэнергию, прекращение роста цен на природное топливо, удорожание, вместо прогнозируемого удешевления, строительства новых АЭС.

Как работает система социальных гарантий в армии

Примечания

Как создавалась первая в мире АЭС?

Для атомного проекта СССР в 1945 — 1946 годах были созданы 4 лаборатории ядерной энергетики. Первая и четвертая в Сухуми, вторая – в Снежинске и третья вблизи станции Обнинская в Калужской области, называлась она лаборатория В. Сегодня это физико-энергетический институт им. Лейпуцкого.

Она создавалась с участием немецких физиков, которых после окончания войны добровольно — принудительно выписывали из Германии для работы в атомных лабораториях Союза, точно так же с немецкими учеными поступали и в США. Одним из прибывших был физик-ядерщик Хайнс Позе, который какое-то время возглавлял Обнинскую лабораторию В. Так что своим открытием первая атомная станция обязана не только советским, но и немецким ученым.

Разрабатывалась первая в мире АЭС в Курчатовской лаборатории №2 и в «НИИхиммаше» под руководством Николая Доллежаля. Доллежаль был назначен главным конструктором ядерного реактора будущей АЭС. Создавали первую АЭС мира в Обнинской лаборатории В, все работы курировал сам Игорь Васильевич Курчатов, которого считали «отцом атомной бомбы», а теперь хотели сделать и отцом ядерной энергетики.

В начале 1951 года проект АЭС находился только на стадии разработки, но здание под атомную станцию уже начали строить. Тяжелые конструкции из железа и бетона, которые невозможно переделать или расширить, уже существовали, а ядерный реактор все еще не был до конца спроектирован. Позже у строителей появится еще одна головная боль – вставить ядерную установку в уже готовое здание.

Интересно то, что первая АЭС в мире проектировалась так, что в ТВЭЛы – тонкие трубки, которые помещаются в ядерную установку, помещались не урановые таблетки, как сегодня, а урановый порошок, из сплавов урана и молибдена. Первые 512 ТВЭЛов для запуска АЭС были сделаны на заводе в городе Электросталь, каждый из них проходил проверку на прочность, делали это вручную. В ТВЭЛ заливалась горячая вода нужной температуры, по покраснению трубки, ученые определяли, выдерживает ли металл высокую температуру. В первых партиях ТВЭЛов было очень много бракованных изделий.

Преимущества и недостатки использования АЭС

Потребление электроэнергии во всем мире постоянно возрастает. При этом рост потребления увеличивается более ускоренными темпами, чем выработка энергии, а практическое применение современных перспективных технических решений в данной области по многим причинам начнется через несколько лет. Решением данной проблемы становится совершенствование ядерной энергетики и возведение новых атомных электростанций. Можно выделить следующие преимущества эксплуатации атомных электростанций:

  1. Высокая энергоемкость используемого топливного ресурса. При полноценном выгорании один килограмм урана выделяет количество энергии, сопоставимое с результатом сжигания около 50 тонн нефти, либо вдвое больше тонн каменного угля
  2. Способность вторичного применения ресурса после переработки. Расщепленный уран, в отличие от отходов органического топлива, может быть повторно использован для выработки энергии. Дальнейшее развитие атомных электростанций предполагает полноценный переход на замкнутый цикл, что поможет обеспечить отсутствие образования каких-либо вредных отходов
  3. Атомная станция не способствует образованию парникового эффекта. Каждый день атомные электростанции помогают избежать эмиссии около 600 миллионов тонн углекислого газа. Действующие на территории России АЭС каждый год задерживают поступление в окружающую среду более 200 миллионов тонн углекислого газа
  4. Абсолютная независимость от местонахождения источников топлива. Большая удаленность атомной электростанции от месторождения урана никак не влияет на возможность ее функционирования. Энергетический эквивалент ядерного ресурса во много раз больше, в сравнении с органическим топливом, и расходы на его транспортировку минимальны
  5. Невысокая стоимость использования. Для большого числа стран выработка электроэнергии при помощи АЭС не затратнее, чем на других типах электростанций

Несмотря на большое количество положительных сторон эксплуатации атомных электростанций, существует несколько проблем. Основной недостаток заключается в тяжких последствиях аварийных ситуаций, для предотвращения которых электростанции оснащаются довольно сложными системами безопасности с большими запасами и резервированием. Таким образом обеспечивается исключение повреждения центрального внутреннего механизма даже при масштабной аварии.

Большой проблемой для эксплуатации АЭС также является их уничтожение после выработки ресурсов. Стоимость их ликвидации может достигать 20% от всех затрат на их сооружение. Кроме того, по техническим соображениям для атомных электростанций является нежелательным функционирование в маневренных режимах.

Первые атомные электростанции в мире позволили сделать большой шаг в усовершенствовании ядерной энергетики. В современных условиях в России около 17% электроэнергии вырабатывается именно при помощи АЭС. По причине выгоды эксплуатации АЭС многие страны приступают к строительству новых реакторов и рассматривают их как перспективный источник электроэнергии.

Смотрите также

Примечания

Пало-Верде

Атомная электростанция Пало-Верде находится в штате Аризона, США. Это самая мощная АЭС в Америке. Начала работу в 1985 году, строительство сооружения заняло 9 лет. Обеспечивает поступление электроэнергии в города с общим населением 4 млн человек.

Мощность АЭС − 3937 МВт, на ней задействовано 3 реактора. Важным является то, что для их охлаждения на Пало-Верде используют сточные воды близлежащих городов. Это связано с тем, что электростанция располагается посреди пустыни и является единственным сооружением такого типа, не находящемся вблизи естественных или искусственных водоемов.

Атомные электростанции США — основные недостатки и угрозы

Как уже отмечалось выше, электрические станции на базе ядерных технологий очень выгодны в экономическом плане. И на сегодняшний день, да и в среднесрочной перспективе, замены этим производствам не предвидится. Возможно, со временем на смену придут возобновляемые источники энергии, но пока мощность самой большой ядерной электростанции сопоставима с суммарной мощностью всех альтернативных и инновационных разработок. А сколько атомных электростанций в мире?

Тем не менее, при всех своих плюсах этот вид энергии имеет и свои отрицательные аспекты, которые в той или иной степени сдерживают развитие «мирного атома».

  • Безопасность — «Ахиллесова пята» всех сооружений. К сожалению, человечество периодически сталкивается с трагедиями, авариями в реакторах — Чернобыль, Фокусима и так далее. А сколько АЭС в Европе находилось на грани аварии? Об этом даже специалисты не скажут. Тем не менее, это не повод отказываться полностью от ядерной энергии. Необходимо уделить максимум внимания разработке безопасных технологий, которые будут устойчивы не только к человеческому фактору, как наиболее опасному, но и к природным катаклизмам — землетрясениям, наводнениям, цунами, торнадо и другим. Если разработчикам и технологам удастся минимизировать риски, то крупнейшие электростанции еще долго будут оставаться атомными.
  • Еще одной серьезной проблемой, с которой сталкиваются электростанции мира, является необходимость утилизации отходов. Действительно, радиактивные отходы имеют большой, в несколько миллионов лет, срок полураспада, когда они становятся уже безопасными. Но здесь необходимо отметить, что топлива того даже самая мощная атомная электростанция в России использует немного по объему. Как следствие, грамотно организованные могильники не занимают много пространства. Правда и постоянного контроля и ухода они требуют.

Варианты

  • M80 — Первая модификация. Выпущена небольшой партией.
  • M80A — Основная модификация, с модернизированной бронёй, вооружением и силовой установкой.
  • M80A1 — Модернизированная M80A. Установлена 30-мм пушка и новая СУО.
  • M80AI — БРМ, на базе M-80A1. Прототип.
  • M80A KC — КШМ командира роты, на базе M80A.
  • M80A KB — КШМ командира батальона, на базе M80A.
  • VK80A — КШМ командира бригады, на базе M80A. Вооружение 1 × 7,62-мм пулеметом. Выпущены малой серией.
  • M80A Sn — Санитарно-эвакуационная машина. Вооружение отсутствует. Экипаж: 1 механик-водитель, 3 санитара-медика. Перевозит 4 лежа или 8 сидя раненых.
  • M80A LT — Самоходный противотанковый ракетный комплекс. Вооружение: модернизированная ПУ ПТРК 9М14М «Малютка».
  • M80А SPA — 30-мм спаренная Зенитная самоходная установка.
  • M80А SPAAG — 20-мм спаренная Зенитная самоходная установка, на базе 80A1.
  • Sava M-90 — Самоходный ЗРК с ЗУР «Стрела-10М». Прототип.
  • M80A MOS — Самоходный миноукладчик, на базе М80А.
  • М98 (M80AK «Выдра»/«Vidra») — Разработка с изменённой башней, вооружением и постановщиком дымовой завесы. Вооружена 30-мм пушкой Zastava M86/M89 (30×192 мм).
  • М80АБ1

Вооружение и военная техника

Основная статья: Список вооружения и военной техники Сухопутных войск Российской Федерации

Сухопутные войска Российской Федерации оснащаются преимущественно техникой российского и советского производства. В их состав входит буксируемая и самоходная артиллерия (пушки, гаубицы, миномёты, реактивные системы залпового огня от 122 до 300 мм), танки, бронетранспортёры, бронированные разведывательные машины, боевые машины пехоты и огнемётчиков, самоходные ПТРК, средства ПВО состоящие из пушечных, зенитных, ракетных и ракетно-пушечных комплексов ближнего, малого, среднего и дальнего радиуса действия. Транспортные потребности удовлетворяются грузовиками и лёгкими утилитарными вседорожниками. На вооружении имеются также разведывательные беспилотники.

Стрелковое вооружение состоит из автоматических и ручных гранатомётов; реактивных гранат и огнемётов; переносных противотанковых и зенитных ракет; пистолетов; штурмовых, снайперских и крупнокалиберных винтовок; ручных, единых и крупнокалиберных пулемётов.

Обзор

Во всем мире было зарегистрировано не менее 99 (гражданских и военных) аварий на атомных электростанциях с 1952 по 2009 год (определяемых как инциденты, которые привели либо к человеческим жертвам, либо к материальному ущербу на сумму более 50 000 долларов США, сумма, которую федеральное правительство США определяет. используется для определения аварий на атомной энергии, о которых необходимо сообщать), на общую сумму 20,5 млрд долларов США в виде имущественного ущерба. Затраты на материальный ущерб включают разрушение собственности, реагирование на чрезвычайные ситуации, восстановление окружающей среды , эвакуацию, потерянный продукт, штрафы и судебные иски. Поскольку атомные электростанции большие и сложные, аварии на площадке, как правило, обходятся относительно дорого.

Авария на Три-Майл-Айленде в 1979 году в Пенсильвании была вызвана серией отказов во вторичных системах реактора, которые позволили улетучиться радиоактивному пару и привели к частичному расплавлению активной зоны одного из двух реакторов на площадке, что сделало ее наиболее серьезной аварией. в истории США.

Самой страшной ядерной аварией в мире стала Чернобыльская катастрофа 1986 года в Советском Союзе , одна из двух аварий, получивших оценку 7 (наивысшего) уровня по Международной шкале ядерных событий

Обратите внимание, что чернобыльская катастрофа могла получить 8 или 9 баллов, если шкала продолжалась. Авария произошла на Чернобыльской АЭС после того, как испытание небезопасной системы привело к серии паровых взрывов, разрушивших четвертый реактор

Шлейф распространился на близком расстоянии в основном над Беларусью, а затем покрыл обширные части Европы со следами радиоактивности, в результате чего олени в Северной Европе и овцы в некоторых частях Англии оказались непригодными для употребления в пищу. Вокруг реактора образовалась 30-километровая « зона отчуждения ».

После чернобыльской катастрофы произошло не менее 57 аварий и серьезных инцидентов, а в США произошло более 56 серьезных инцидентов. Относительно небольшое количество несчастных случаев со смертельным исходом.

Обратите внимание, что не все рейтинги являются окончательными, поскольку результаты « Рак» и «Неучтенные / скрытые» могут иметь / будут иметь место.

Запорожская АЭС

Это главная действующая АЭС Украины. Она находится в городе под названием Энергодар в Запорожской области. Иногда ее называют АЭС Энергодар.

Запорожская АЭС – крупнейшая атомная станция в Европе, в ее состав входят шесть реакторов, суммарная мощность которых равна 6000 МВт.

В 1984 году стартовал запуск первого блока. После этого каждый год открывались новые реакторы, вплоть до 1987 года.

В 1989 году было принято решение о запуске пятого энергоблока. Затем модернизация АЭС временно прекратилась, так как был введен мораторий на строительство атомных реакторов. В 1995 году этот закон был отменен, и был сдан в эксплуатацию шестой блок АЭС.

Атомные электростанции России

Балаковская АЭС

Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.

Балаковская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Ежегодно она вырабатывает более 30 миллиардов кВт•ч электроэнергии. В случае ввода в строй второй очереди, строительство которой было законсервировано в 1990-х, станция могла бы сравняться с самой мощной в Европе Запорожской АЭС.

Белоярская АЭС

Белоярская АЭС расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).

На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.

В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.

БН-600 сдан в эксплуатацию в апреле 1980 — первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.

БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

Билибинская АЭС

Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.

Вырабатывает электрическую и тепловую энергию.

Калининская АЭС

Калининская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.

Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.

4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.

Кольская АЭС

Кольская АЭС расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.

Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции — 1760 МВт.

Курская АЭС

Курская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.

Мощность станции — 4000 МВт.

Ленинградская АЭС

Ленинградская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.

Мощность станции — 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт•ч.

Нововоронежская АЭС

Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.

На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.

Мощность станции (без учёта Нововоронежской АЭС-2) — 1440 МВт.

Ростовская АЭС

Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.

В 2001—2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС.

В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.

Смоленская АЭС

Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.

В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

Варианты и модификации

Снайперская специальная модернизированная ВССМ

Новейшая модификация ВСС с увеличенным ресурсом, прикладом скелетного типа из металла, регулируемыми затыльником и щечками, а также сошками и системой рельсового крепления (планкой Пикатинни).

Автомат специальный АС «Вал»

Это оружие спроектировано в 80 годах двадцатого века на базе «Винтореза». Элементы автомата и винтовки имеют 70% показатель унификации.

«Вал» компактен и имеет небольшой вес, что делает его удобным для использования. Оружие имеет мощную убойную силу и может пробить бронезащиту или кузов автомобиля. В качестве патронов возможно применение СП-5 и СП-6.

Интегрированный глушитель обеспечивает скрытность применения, а конструктивные особенности позволяют быстро (от 30 до 60 секунд) производить сборку-разборку АС и складывать его в небольшой кейс.

На ствольной коробке находится планка с возможностью закрепления оптических прицелов (для дневного и ночного времени).

Автомат специальный АС «Вал»

Карабин охотничий самозарядный КО ВСС

Модернизированная версия снайперской винтовки отличается от своего прототипа в первую очередь удлиненным стволом (до 403 миллиметров) и отсутствием перфорации. Это оружие оптимизировано под патрон 9×39. Общая длина изделия — 985 миллиметров, а вес — 2,9 килограмм.

Карабин не имеет возможности стрелять очередями. А вот глушитель на эту модель устанавливается настоящий, боевой, со стандартной «начинкой».

Оружейный завод в городе Тула выпускает две модели охотничьего карабина: КО ВСС и КО ВСС-01. Последняя модификация отличается наличием планки Пикатинни.

КО ВСС-01 и КО ВСС

Гражданское оружие предназначается для любительской охоты и промысла практически во всех климатических районах. Исключение составляют тропические зоны с повышенной влажностью.

Важные события и даты

Практически все время работы после запуска реактор использовался как исследовательский благодаря наличию петлевых установок и экспериментальных устройств. Обнинская АЭС принимала самое активное участие в следующих проектах:

  • Испытания твэлов для ледокола «Ленин»
  • Полный цикл испытания для 1-го и 2-го блоков Белоярской АЭС, строительство которой началось в 1958 году
  • При помощи экспериментов на Обнинской АЭС создана первая транспортабельная атомная энергетическая установка ТЭС-3
  • Важнейшая экспериментальная база для Ядерных энергетических установок для подводных лодок.
  • Разработка реакторов ФЭИ – БР-5, БР-10 и БОР-60
  • Активное участие в разработке реакторов на быстрых нейронах БН-350, БН-600 и БН-800
  • Производились испытания для космических атомных установок «Топаз» и «Бук», и в 1970 именно на основе этих исследования создали первый в мире реактор-преобразователь «Топаз»
  • Исследовательский реактор БОР-60  и исследовательский реакторы на быстрых нейронах БР
  • Производились эксперименты для Билибинской АЭС, работающей в условиях крайнего севера.
  • Создание нейтронного спектрометра
  • Так же на станции осуществлено более десятка важных открытий и измерений в ядерной отрасли.

См. также

Атомная энергетика России

После распада Советского Союза в 1991 году на территории России находились 28 энергоблоков, общая мощность которых превышала 20 тысяч МВт. За время с 1991 по 2015 годы АЭС России на карте страны получили в эксплуатацию еще 7 ядерных реакторов общей мощностью почти 7 тысяч МВт. В то же время после 2000х остановили работу Обнинской и Сибирской АЭС из-за окончания срока их эксплуатации.

Сегодня АЭС на карте России – это десять атомных станций, большинство из которых были открыты во времена Советского Союза и дополнены новыми реакторами уже в независимое время.

Карта АЭС России включает в себя 10 работающих атомных станций. Действующие атомные станции в России – Балаковская, Белоярская, Билибинская, Калининская, Кольская, Курская, Ленинградская, Нововоронежская, Ростовская, Смоленская.

На десяти АЭС России эксплуатируются 34 энергоблока общей мощностью 26 240 МВт. А именно:

  1. 18 энергоблоков с реакторами типа ВВЭР (водо-водяные реакторы), из них 11 реакторов ВВЭР–1000 и 6 атомных реакторов ВВЭР–440.
  2. 15 энергоблоков с канальными реакторами, 11 энергоблоков с реакторами типа РБМК–1000 (водо-водяные кипящие реакторы) и 4 энергоблока с реакторами типа ЭГП–6 (графито — водные реакторы).
  3. 1 энергоблок с реактором на быстрых нейтронах с натриевым охлаждением, БН–600.

Долгое время БН-600 был единственным реактором в мире, работающим на быстрых нейтронах. Этот реактор работает на уране-238, что экономит деньги на обогащении урана-235, кроме того, он способен работать на так называемом «отвальном уране», то есть остатках отработанного урана из привычных реакторов на медленных нейтронах. Реактор БН-600 работает на Белоярской АЭС России. Он был запущен в 1980 году. В апреле 2010 года было выдано разрешение на продление его эксплуатации до 2020 года. Атомные станции России на карте страны сосредоточены в основном на северо-западе. Карта АЭС России сегодня выглядит так: Атомные станции России производят около 18.6% от всей электроэнергетики страны. При этом в Европейской части России доля атомной электроэнергии – около 30%, на Северо-Западе страны и того больше – 37%.

Вклад АЭС России в мировую атомную энергетику – 6%. Для сравнения, в США производят 26% от мировой атомной энергетики, во Франции – 17%, в Японии – 12%. В Китае 4%. Россия в этом рейтинге на четвертом месте.

Атомные станции России, карта мировых АЭС.  Кроме проектирования и строительства ядерных реакторов в России ведется добыча и переработка урановых руд. Таким образом, АЭС в России получают местное урановое топливо. Расскажет о том, чем «питаются» АЭС России карта добычи российского урана. 

Автоматическая винтовка Heckler & Koch G3 (ФРГ)

Безопасность

Объекты использования атомной энергии (в том числе ядерные установки, пункты хранения ядерных материалов и радиоактивных веществ, пункты хранения радиоактивных отходов) в соответствии со статьёй 48.1 ГрК РФ относятся к особо опасным объектам.

Надзор за безопасностью российских АЭС осуществляет Ростехнадзор.

Охрана труда регламентируется следующими документами:

  1. Правила охраны труда при эксплуатации тепломеханического оборудования и тепловых сетей атомных станций ОАО «Концерн Энергоатом». СТО 1.1.1.02.001.0673-2006

Ядерная безопасность регламентируется следующими документами:

  1. Общие положения обеспечения безопасности атомных станций. НП-001-15
  2. Правила ядерной безопасности реакторных установок атомных станций. ПБЯ РУ АС-89 (ПНАЭ Г — 1 — 024 — 90)

Радиационная безопасность регламентируется следующими документами:

  1. Санитарные правила проектирования и эксплуатации атомных станций (СП АС-03)
  2. Основные правила обеспечения радиационной безопасности (ОСПОРБ-99/2010)
  3. Правила радиационной безопасности при эксплуатации атомных станций (ПРБ АС-99)
  4. Нормы радиационной безопасности (НРБ-99/2009)
  5. Федеральный закон «О санитарно-эпидемиологическом благополучии населения».

На базе оригинального самолета Ан-24 были произведены следующие модификации:

  • Ан-2A —  модификация, рассчитанная на перевозку 44 пассажиров.

  • Ан-24Б  — пассажирский вариант способный перевозить до 52 пассажиров.

  • Ан-24Р — вариант самолета для нужд радиоразведки.

  • Ан-24РT — военно-транспортная модификация самолета

  • Ан-24ШT — штабной вариант самолета

  • Ан-24ФК  — вариант самолета предназначенный для аэрофотосъемки

  • Ан-24PP — версия оборудованная приборами дли проведения анализа радиационного загрязнения

  • Ан-24ПC — поисково-спасательный вариант Ан-2.

  • Ан-24ЛП — модификация самолета Ан-2 предназначенная для тушения лесных пожаров.

Схема салона Ан-24

Также были произведены, и находились в проектах и другие модификации Ан-24, предназначенные для выполнения широкого круга других задач.

За весь период серийного выпуска, c 1962 по 1979 год, было произведено около 1300 самолетов Ан-24. На сегодняшнее время, по разным подсчетам, в эксплуатации находится около ста этих машин.

Самолет Ан-24 также выпускался и в Китае, c 1984 года, под обозначением Xian Y-7. Начиная с 2000 года, Китай продолжает выпускать модифицированную версию этого самолета, получившее наименование Xian MA60.  Сегодня преемником самолета Ан-24 стал грузопассажирский турбовинтовой самолет Ан-140, спроектированный украинским государственным предприятием АНТК «Антонов».

История

На конец 1991 года в Российской Федерации функционировало 28 энергоблоков общей номинальной мощностью 20 242 МВт, без учёта Обнинской и Сибирской АЭС, а также без ректоров ВК-50 и БОР-60 в НИИАР г. Димитровград.

С 1991 года по 2015 год к сети было подключено 7 новых энергоблоков общей номинальной мощностью 6 964 МВт: 4-й блок на Балаковской АЭС (1993), 3-й и 4-й блоки на Калининской АЭС (2004 и 2011), 1-, 2- и 3-й блоки на Ростовской АЭС (2001, 2010 и 2014), 4-й блок Белоярской АЭС (2015).

В 2002 году была выведена из эксплуатации первая в мире АЭС — Обнинская. Был заглушен её единственный реактор мощностью 6 МВт.

В 2008 году была закрыта Сибирская АЭС.

На конец 2015 года в стадии строительства находятся 6 энергоблоков, не считая двух блоков Плавучей атомной электростанции малой мощности.

В 2007 году федеральные власти инициировали создание единого государственного холдинга «Атомэнергопром» объединяющего компании Росэнергоатом, ТВЭЛ, Техснабэкспорт и Атомстройэкспорт. 100 % акций ОАО «Атомэнергопром» передавалось одновременно созданной Государственной корпорации по атомной энергии «Росатом».

На начало 2010 года за Россией было 16 % на рынке услуг по строительству и эксплуатации АЭС в мире. Согласно исследованию РБК от июля 2010 года, на сегодня «Атомстройэкспорт», основным акционером которого является государственная корпорация Росатом, сохраняет за собой 20 % мирового рынка строительства АЭС. Эта доля может увеличиться до 25 %. По данным на март 2010 года, Росатом строит 10 атомных энергоблоков в России и 5 за рубежом.

В России построено 10 АЭС, на которых эксплуатируется 31 энергоблок. С 1991 года в строй было введено 3 новых блока. На начало 2006 года в стадии строительства находились ещё три. В 2007 году российские АЭС выработали 160 млрд кВт•ч электроэнергии, что составило 15,7 % от общей выработки в стране. Свыше 4 % электроэнергии, производимой в европейской части России и на Урале, приходится на АЭС. В 2009 г. прирост производства урана составил 25 % в сравнении с 2008 г. После запуска энергоблока Волгодонской АЭС в 2010 году, Путин озвучил планы доведения атомной генерации в общем энергобалансе России с 16 % до 20-30 %.

Сейчас Росатому принадлежит 40 % мирового рынка услуг по обогащению урана и 17 % рынка по поставке ядерного топлива для АЭС. Россия имеет крупные комплексные контракты в области атомной энергетики с Индией, Бангладеш,Арменией, Венесуэлой, Китаем, Вьетнамом, Ираном, Турцией, Болгарией, Белоруссией и с рядом стран Центральной Европы. Вероятны комплексные контракты в проектировании, строительстве атомных энергоблоков, а также в поставках топлива с Аргентиной, Нигерией, Казахстаном, Украиной, Катаром. Ведутся переговоры о совместных проектах по разработке урановых месторождений с Монголией

В России существует большая национальная программа по развитию ядерной энергетики, включающей строительство 28 ядерных реакторов в ближайшие годы, в дополнение к 30, уже построенным в советский период. Так, ввод первого и второго энергоблоков Нововоронежской АЭС-2 должен состояться в 2013—2015гг.

Федеральным агентством по атомной энергии России ведётся не имеющий аналогов в мире проект по созданию уникальных плавучих атомных электростанций малой мощности. В 2010 году замглавы концерна «Росэнергоатом» заявил, что работы по строительству первого экземпляра идут по графику. Готовность станции — конец 2012 года, выход на эксплуатацию — в 2013 году.

«Теперь наркота попрёт масштабно» — США выводят войска из Афганистана

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector