Пластид

Снайперская винтовка DSR-1

Упаковка

Взрывчатое вещество SEMTEX 1A упаковывается в вощеную бумагу или полиэтиленовый рукав. Инициирующие патроны с центральным каналом упаковываются в бумажные гильзы с пластиковыми крышками с отверстиями для детонатора и детонирующего шнура.

Взрывчатые вещества SEMTEX 1H и SEMTEX 10 упаковываются в вощеную бумагу или полиэтиленовый рукав. Поставляются в форме брикета весом от 250 до 3 000 г в зависимости от требований заказчика. В транспортную упаковку помещается 24 или 25 кг взрывчатого вещества.

Взрывчатое вещество SEMTEX 10-SE поставляется в виде листового заряда размером 300 х 2 мм и длиной, соответствующей 10 кг, т.е. около 10 м. Заряд с обеих сторон покрывается полиэтиленовой пленкой или силиконовой бумагой и наматывается на катушку.

Сыпучее взрывчатое вещество SEMTEX S 30 упаковывается в полиэтиленовые мешки по 25 кг и в транспортную упаковку.

Semtex 90 представляет собой пластичное взрывчатое вещество на основе полуактивного пластификатора и бризантных кристаллических взрывчатых веществ пентрита, гексогена или их смеси. Взрывчатое вещество отличается долговечностью, водостойкостью и хорошей пластичностью в диапазоне температур от -40°С до +63°С.

Размножение и наследование пластид высших растений[править | править код]

Пластиды образуются путём деления уже существующих пластид. Наиболее часто делятся пропластиды, этиопласты и молодые хлоропласты. В меристематических тканях деление пластид коррелирует с делением клеток, поэтому в материнских и дочерних клетках число пластид примерно одинаковое. Механизм деления близок к делению прокариотических клеток. Деление пластид начинается с сжатия в центре, которое, углубляясь, образует перетяжку между двумя дочерними пластидами, после чего происходит полное разделение. На стадии перетяжки на внешней мембране образуется кольцо из белка, близкого по структуре к сократительному белку бактерий FtsZ.

У большей части цветковых растений наследование пластид происходит по материнской линии, поскольку в спермии пластиды либо не попадают, либо деградируют в ходе развития мужского гаметофита или двойного оплодотворения. У некоторых растений (герань, свинчатка, ослинник) было обнаружено двуродительское наследование пластид. Для некоторых голосеменных растений (гинкго, саговники) характерно наследование пластид по отцовской линии.

См. также

Близкие по назначению и характеристикам машины

В массовой культуре

Примечания

  1. >

Береговые ракетные комплексы «Редут»

Размножение и разновидности органелл

Размножение пластид происходит делением развитых органоидов. В образовательных тканях деление органелл и клеток взаимосвязано, поэтому количество пластид в материнских и дочерних клетках практически одинаковое.

Сам же процесс размножения сходен с делением прокариотических клеток, то есть в ее центральной части происходит сжатие, потом образуется перетяжка между новыми образованиями и затем полное разделение. Чаще всего делятся:

  • пропластиды;
  • этиопласты;
  • молодые хлоропласты.

Большинство видов цветов во время размножения приобретает характеристики материнского растения, так как мужские клетки часто деградируют в период развития гаметофита или двойного оплодотворения. У некоторых растений были замечены признаки наследования от обоих родителей, а иногда встречаются экземпляры с отцовскими характерными чертами. Пластиды наземных растений осуществляют ряд функций:

  • фотосинтез;
  • восстановление неорганических ионов;
  • синтез основных метаболитов и регулярных молекул;
  • накопление железа, липидов и крахмала.

Сводная таблица основных видов пластид:

Свойства Хлоропласты Хромопласты Лейкопласты
Строение Двухмембранный органоид с гранами и каналами Органелла с неразвитой внутримембранной системой Органоиды, находящиеся в частях растений, спрятанных от света
Цвет Зеленые Разноцветные Бесцветные
Пигмент Хлорофилл Каротиноид Отсутствует
Форма Овальная Многоугольная Шаровидная
Функции Фотосинтез Накопление каротиноидов Накопление питательных веществ
Преобразование Переходят в хромопласты Не преобразовываются Становятся хролопластами и хромопластами

Функции пластид высших растений и их разнообразие

Пластиды высших растений способны к дифференцировке, дедифференцировке и редифференцировке, набор пластид в клетке зависит от её типа. Пластиды высших растений разнообразны по строению и выполняют широкий спектр функций:

  1. фотосинтез;
  2. восстановление неорганических ионов (нитрита, сульфата);
  3. синтез многих ключевых метаболитов (порфирины, пурины, пиримидины, многие аминокислоты, жирные кислоты, изопреноиды, фенольные соединения и др.), при этом некоторые синтетические пути дублируют уже существующие пути цитозоля;
  4. синтез регуляторных молекул (гиббереллины, цитокинины, АБК и др.);
  5. запасание железа, липидов, крахмала.

По окраске и выполняемой функции выделяют следующие типы пластид:

Растительные клетки листостебельного мха Plagiomnium affine с видимыми хлоропластами (сильно увеличено)

  • Пропластиды — предшественники остальных типов пластид, присутствуют в меристематических клетках. Пропластиды имеют размеры от 0,2 до 1 мкм, что значительно меньше, чем размеры дифференцированных пластид. Внутренняя мембранная система развита слабо, содержат меньше рибосом чем дифференцированные пластиды, могут содержать отложения белка фитоферритина, основная функция которого хранение ионов железа.
  • Лейкопласты — неокрашенные пластиды, участвующие в синтезе изопреноидов эфирных масел (как правило моно- и сесквитерпенов). Характерной особенностью лейкопластов является наличие ретикулярного футляра — сети мембран гладкого эндоплазматического ретикулума, окружающей пластиду. Иногда под термином «лейкопласты» понимают любые неокрашенные пластиды, при этом выделяют следующие типы: амилопласты, элайопласты, протеинопласты.

    • Амилопласты — внешне похожи на пропластиды, но в строме содержатся гранулы крахмала. Амилопласты, как правило, присутствуют в запасающих органах растений, в частности в клубнях картофеля. В грависенсорных клетках корня амилопласты играют роль статолитов. Амилопласты высших растений могут превращаться в хлоропласты или хромопласты.
    • Элайопласты — служат для запасания жиров.
    • Протеинопласты — служат для запасания белков.
  • Этиопласты, или темновые пластиды, развиваются из пропластид в темноте, при освещении они превращаются в хлоропласты. В этиопластах отсутствует хлорофилл, но содержится большое количество протохлорофиллида. Липиды внутренних мембран стромы хранятся в форме рельефной мембранной структуры, называемой проламеллярным телом. Формирование квазикристаллической структуры проламеллярного тела происходит из-за отсутствия мембранных белков тилакоидов, необходимых для их формирования. Известно, что свет инициирует синтез белков тилакоидных мембран и хлорофилла из накопленного протохлорофиллида.
  • Хлоропласты — зелёные пластиды, основной функцией которых является фотосинтез. Хлоропласты как правило имеют элипсовидную форму и длину от 5 до 8 мкм. Количество хлоропластов в клетке различно: в клетке хлоренхимы листа Arabidopsis содержится около 120 хлоропластов, в губчатой хлоренхиме листа клещевины их около 20, клетка нитчатой морской водоросли Spirogyra содержит единственный лентовидный хлоропласт. Хлоропласты имеют хорошо развитую эндомембранную систему, в которой выделяют тилакоиды стромы и стопки тилакоидов — граны. Зелёная окраска хлоропластов обусловлена высоким содержанием основного пигмента фотосинтеза — хлорофилла. Помимо хлорофилла хлоропласты содержат различные каротиноиды. Набор пигментов, участвующих в фотосинтезе (и, соответственно окраска) различен у представителей разных таксонов.
  • Хромопласты — пластиды, окрашенные в жёлтый, красный или оранжевый цвет. Хромопласты могут развиваться из пропластид или повторно дифференцироваться из хлоропластов; также хромопласты могут редифференцироваться в хлоропласты. Окраска хромопластов связана с накоплением в них каротиноидов. Хромопласты определяют окраску осенних листьев, лепестков некоторых цветов (лютики, бархатцы), корнеплодов (морковь), созревших плодов (томат).

История пластичных взрывчатых веществ

Девятнадцатый век стал настоящим «звездным часом» для химиков, которые занимались разработкой новых видов взрывчатых веществ. В 1867 году Альфредом Нобелем был запатентован динамит, который можно назвать первым пластичным взрывчатым веществом.

Первый вид динамита был изготовлен путем смешивания нитроглицерина с кизельгуром (кремниевая земля). Взрывчатое вещество получилось довольно мощным, имело приемлемый уровень безопасности (по сравнению с нитроглицерином) и обладало консистенцией теста.

Во время Второй мировой войны в Германии было разработано пластичное взрывчатое вещество гексопласт, которое состояло из смеси гексогена (75%), динитротолуола, тротила и нитроцеллюлозы. Позже американцы «позаимствовали» этот состав и начали его серийное производство под наименованием С-2.

В Великобритании первое пластичное взрывчатое вещество появилось еще до начала ПМВ, оно называлось PE-1 и использовалось для проведения взрывных работ. РЕ-1 состоял из 88% гексогена и 12% нефтяного масла. Позже этот состав был улучшен, в него добавили эмульгатор лецитин. Под наименованием РЕ-2 эта взрывчатка активно использовалось англичанами в период Второй мировой войны. Причем она находилась на вооружении специальных подразделений Великобритании, возможно именно поэтому пластичная взрывчатка стала в общественном сознании обязательным атрибутом диверсанта.

В 50-е годы англичане создали еще один вид ПВВ – РЕ-4. Причем эта разработка получилась настолько хорошо, что находится на вооружении английской армии и сегодня. В его состав входит: 88% гексогена, 11% специальной смазки DG-29 и эмульгатор. Данное взрывчатое вещество получилось весьма удачным – недорогим, надежным и довольно мощным. РЕ-4 используется для проведения взрывных работ, а также для снаряжения некоторых видов боеприпасов.

В США начали производить пластичную взрывчатку во время Второй мировой войны. Первым американским ПВВ стала взрывчатка С-1, аналогичная по составу английской РЕ-2. Чуть позже она была несколько модифицирована до С-2, а затем и С-3. Все эти ПВВ в качестве взрывчатого компонента использовали гексоген, отличались лишь пластификаторы.

В 1967 года была запатентована пластичная взрывчатка С-4, которая позже стала практически синонимом ПВВ. С-4 весьма успешно применялась во Вьетнаме, в настоящее время существует несколько классов этой взрывчатки, они отличаются друг от друга количеством гексогена.

С использованием С-4 во Вьетнаме связано несколько курьезных историй. Поначалу применение этого взрывчатого вещества привело к частым случаям тяжелых отравлений среди американских солдат. Дело в том, что они пытались использовать куски С-4 вместо привычной для американцев жвачки. Гексоген, входящий в состав С-4, является сильным ядом, он и вызывал отравления. После этого в инструкцию к С-4 был внесен пункт о том, что жевать пластит запрещено.

Вторая группа несчастных случаев была связана с попытками военнослужащих использовать С-4 в качестве топлива для приготовления пищи. Пластит не взрывался, но пары гексогена, попав вместе с дымом в пищу, также приводили к отравлениям. После этого в инструкциях к взрывчатке появился еще один пункт: «Запрещено использовать для приготовления пищи».

Следует отметить, что сегодня на вооружении американской армии находится большое количество разновидностей пластичной взрывчатки. Они отличаются и по взрывному компоненту, и по пластификаторам.

Первой советской пластичной взрывчаткой, которую начали выпускать массово, стала ПВВ-4. Этот пластит состоит из 80% гексогена, 15% смазочного масла и 5% стеарата кальция. Она появилась примерно в конце 40-х годов, однако в войска практически не поступала.

В 60-е годы в СССР был создан еще один вид пластичной взрывчатки – ПВВ-5А, который был полным аналогом американской С-4. Эту взрывчатку использовали для снаряжения мин МОН и динамической брони для танков.

В тот же период для систем разминирования была создана пластиковая взрывчатка ПВВ-7 с повышенным уровнем фугасности.

Долгое время пластичная взрывчатка считалась в СССР секретной, поэтому в строевые части она почти не поступала. Ситуация изменилась только с началом войны в Афганистане.

История пластичных взрывчатых веществ

Девятнадцатый век стал настоящим «звездным часом» для химиков, которые занимались разработкой новых видов взрывчатых веществ. В 1867 году Альфредом Нобелем был запатентован динамит, который можно назвать первым пластичным взрывчатым веществом.

Первый вид динамита был изготовлен путем смешивания нитроглицерина с кизельгуром (кремниевая земля). Взрывчатое вещество получилось довольно мощным, имело приемлемый уровень безопасности (по сравнению с нитроглицерином) и обладало консистенцией теста.

Во время Второй мировой войны в Германии было разработано пластичное взрывчатое вещество гексопласт, которое состояло из смеси гексогена (75%), динитротолуола, тротила и нитроцеллюлозы. Позже американцы «позаимствовали» этот состав и начали его серийное производство под наименованием С-2.

В Великобритании первое пластичное взрывчатое вещество появилось еще до начала ПМВ, оно называлось PE-1 и использовалось для проведения взрывных работ. РЕ-1 состоял из 88% гексогена и 12% нефтяного масла. Позже этот состав был улучшен, в него добавили эмульгатор лецитин. Под наименованием РЕ-2 эта взрывчатка активно использовалось англичанами в период Второй мировой войны. Причем она находилась на вооружении специальных подразделений Великобритании, возможно именно поэтому пластичная взрывчатка стала в общественном сознании обязательным атрибутом диверсанта.

В 50-е годы англичане создали еще один вид ПВВ – РЕ-4. Причем эта разработка получилась настолько хорошо, что находится на вооружении английской армии и сегодня. В его состав входит: 88% гексогена, 11% специальной смазки DG-29 и эмульгатор. Данное взрывчатое вещество получилось весьма удачным – недорогим, надежным и довольно мощным. РЕ-4 используется для проведения взрывных работ, а также для снаряжения некоторых видов боеприпасов.

В США начали производить пластичную взрывчатку во время Второй мировой войны. Первым американским ПВВ стала взрывчатка С-1, аналогичная по составу английской РЕ-2. Чуть позже она была несколько модифицирована до С-2, а затем и С-3. Все эти ПВВ в качестве взрывчатого компонента использовали гексоген, отличались лишь пластификаторы.

В 1967 года была запатентована пластичная взрывчатка С-4, которая позже стала практически синонимом ПВВ. С-4 весьма успешно применялась во Вьетнаме, в настоящее время существует несколько классов этой взрывчатки, они отличаются друг от друга количеством гексогена.

С использованием С-4 во Вьетнаме связано несколько курьезных историй. Поначалу применение этого взрывчатого вещества привело к частым случаям тяжелых отравлений среди американских солдат. Дело в том, что они пытались использовать куски С-4 вместо привычной для американцев жвачки. Гексоген, входящий в состав С-4, является сильным ядом, он и вызывал отравления. После этого в инструкцию к С-4 был внесен пункт о том, что жевать пластит запрещено.

Вторая группа несчастных случаев была связана с попытками военнослужащих использовать С-4 в качестве топлива для приготовления пищи. Пластит не взрывался, но пары гексогена, попав вместе с дымом в пищу, также приводили к отравлениям. После этого в инструкциях к взрывчатке появился еще один пункт: «Запрещено использовать для приготовления пищи».

Следует отметить, что сегодня на вооружении американской армии находится большое количество разновидностей пластичной взрывчатки. Они отличаются и по взрывному компоненту, и по пластификаторам.

Первой советской пластичной взрывчаткой, которую начали выпускать массово, стала ПВВ-4. Этот пластит состоит из 80% гексогена, 15% смазочного масла и 5% стеарата кальция. Она появилась примерно в конце 40-х годов, однако в войска практически не поступала.

В 60-е годы в СССР был создан еще один вид пластичной взрывчатки – ПВВ-5А, который был полным аналогом американской С-4. Эту взрывчатку использовали для снаряжения мин МОН и динамической брони для танков.

В тот же период для систем разминирования была создана пластиковая взрывчатка ПВВ-7 с повышенным уровнем фугасности.

Долгое время пластичная взрывчатка считалась в СССР секретной, поэтому в строевые части она почти не поступала. Ситуация изменилась только с началом войны в Афганистане.

Общие черты строения пластид высших растений

Типичные пластиды высших растений окружены оболочкой из двух мембран — внешней и внутренней. Внутренняя и внешняя мембраны пластид бедны фосфолипидами и обогащены галактолипидами. Внешняя мембрана не имеет складок, никогда не сливается с внутренней мембраной и содержит поровый белок, обеспечивающий свободный транспорт воды, ионов и метаболитов с массой до 10 кДа. Внешняя мембрана имеет зоны тесного контакта с внутренней мембраной; предполагается, что в этих участках осуществляется транспорт белков из цитоплазмы в начале пластид. Внутренняя мембрана проницаема для небольших незаряженных молекул и для недиссоциированных низкомолекулярных монокарбоновых кислот, для более крупных и заряженных метаболитов в мембране локализованы белковые переносчики. Строма — внутреннее содержимое пластид — представляет собой гидрофильный матрикс, содержащий неорганические ионы, водорастворимые органические метаболиты, геном пластид (несколько копий кольцевой ДНК), рибосомы прокариотического типа, ферменты матричного синтеза и другие ферментативные системы. Эндомембранная система пластид развивается в результате отшнуровки везикул от внутренней мембраны и их упорядочивания. Степень развития эндомембранной системы зависит от типа пластид. Наибольшего развития эндомембранная система достигает в хлоропластах, где она является местом протекания световых реакций фотосинтеза и представлена свободными тилакоидами стромы и тилакоидами, собранными в стопки — граны. Внутреннее пространство эндомембран называется люмен. Люмен тилакоидов, также как и строма, содержит ряд водорастворимых белков.

Делаем решетку

Взял то, что было в огороде, можете взять любую решетку. Отпилим все по размеру, чтобы ничего лишнего не было, по внутренним пазам, которые делал заранее. Что же, решетка входит идеально, но пока ничем не закреплена, поэтому ее прикручу теми же саморезами. Четырех вполне достаточно. Особой прочности не нужно, да и в будущем решетку снимать, делать супер крепление не нужно. Отлично. Все прикреплено. Можно переходить к следующему этапу. Нужно сверху сделать рамку для пластика. Есть идеальный кусок ДСП, просто распилим его пополам и рамки готовы.

О литье и формовке деталей из пластмассы с 5 минуты.

Физические и химические характеристики

Пластит в нормальном агрегатном состоянии представляет собой пластичное глинообразное вещество, которое на ощупь напоминает пластилин с песком. Хотя, существует большое количество пластичных взрывчатых веществ, и они отличаются друг от друга и по цвету, и по консистенции. Советская пластичная взрывчатка ПВВ-4 напоминает плотную глину темно-коричневого цвета. Другие виды пластичных взрывчатых веществ похожи на пасту, это зависит от вида и количество пластификатора, который использован при изготовлении взрывчатки.

Пластит практически нечувствителен к механическим воздействиям, его можно бить, по нему можно стрелять – это не вызовет детонации. Аналогично ПВВ реагируют на огонь, искру или химическое воздействие. Для подрыва пластита необходим капсюль-детонатор, погруженный во взрывчатку на глубину не менее 1 см.

Скорость детонации ПВВ составляет 7 тыс. м/сек., бризантность этого взрывчатого вещества – 21 мм, фугасность – 280 см 3 , а энергия взрывчатого превращения пластита – 910 кКал/кг.

Пластичные взрывчатые вещества не вступают в реакции с металлами, они не растворяются в воде, не теряют своих свойств при длительном нагревании. Пластит хорошо горит, интенсивное горение в замкнутом пространстве может привести к детонации.

Если говорить о советской пластичной взрывчатке ПВВ-4, то она расфасовывается в брикеты массою в 1 кг. Есть разновидности ПВВ, которые упаковываются в тубы или выполнены в виде лент. Эти взрывчатые вещества обладают большей эластичностью, они напоминают резину или каучук. Существуют ПВВ, в состав которых включены клеящие добавки. Их удобно прикреплять к различным поверхностям.

Меры предосторожности

Ацетон является весьма опасной жидкостью, которая крайне негативно воздействуетна организм человека

Поэтому жидкий пластик своими руками разрешается изготавливать только при строгом соблюдении следующих мер предосторожности:

  1. Перед работой с ацетоном необходимо тщательно изучить инструкцию по его применению. Она указана на этикетке емкости.
  2. Следует использовать специальные герметичные защитные очки. Они уберегут глаза в случае попадания капель и испарений жидкости. Работа без них может привести к серьезным травмам глаз.
  3. Ацетон токсичен, поэтому пользоваться ним следует только в пределах хорошо проветриваемого помещения. При этом необходимо использовать средства защиты органов дыхания.
  4. Это легко воспламеняющееся средство. Поэтому жидкий пластик своими руками делают вдали от источников открытого огня. А при выполнении работ категорически запрещается курение.
  5. Остатки ацетона запрещается сливать в систему канализации.
  6. По окончании процесса, а также после заливки готового пластика в формы, необходимо тщательно вымыть руки.

Рецепт

Youtube | Мастер Сергеич

Высыпьте две столовые ложки крахмала на рабочую поверхность. Добавьте примерно три столовые ложки клея. Сверху насыпьте еще одну ложку крахмала и начните вымешивать.

Youtube | Мастер Сергеич

Заверните в целлофановый пакет получившееся «тесто» и оставьте на пять минут.

Youtube | Мастер Сергеич

Разделите массу на два кусочка, сделайте толстый блинчик, залейте его любым растительным маслом. Вымешайте. Пластик готов к применению.

Youtube | Мастер Сергеич

Наполните «тестом» формочки. Лучше всего использовать силиконовые варианты.

Youtube | Мастер Сергеич

Выложите на бумагу и дайте высохнуть 1-3 дня.

Youtube | Мастер Сергеич

Зашкурьте на наждачке. Покрасьте акриловой краской.

Подробная инструкция в видео ниже.

Функции пластид высших растений и их разнообразие[править | править код]

Пластиды высших растений способны к дифференцировке, дедифференцировке и редифференцировке, набор пластид в клетке зависит от её типа. Пластиды высших растений разнообразны по строению и выполняют широкий спектр функций:

  1. фотосинтез;
  2. восстановление неорганических ионов (нитрита, сульфата);
  3. синтез многих ключевых метаболитов (порфирины, пурины, пиримидины, многие аминокислоты, жирные кислоты, изопреноиды, фенольные соединения и др.), при этом некоторые синтетические пути дублируют уже существующие пути цитозоля;
  4. синтез регуляторных молекул (гиббереллины, цитокинины, АБК и др.);
  5. запасание железа, липидов, крахмала.

По окраске и выполняемой функции выделяют следующие типы пластид:

Растительные клетки листостебельного мха Plagiomnium affine с видимыми хлоропластами (сильно увеличено)

  • Пропластиды — предшественники остальных типов пластид, присутствуют в меристематических клетках. Пропластиды имеют размеры от 0,2 до 1 мкм, что значительно меньше, чем размеры дифференцированных пластид. Внутренняя мембранная система развита слабо, содержат меньше рибосом чем дифференцированные пластиды, могут содержать отложения белка фитоферритина, основная функция которого хранение ионов железа.
  • Лейкопласты — неокрашенные пластиды, участвующие в синтезе изопреноидов эфирных масел (как правило моно- и сесквитерпенов). Характерной особенностью лейкопластов является наличие ретикулярного футляра — сети мембран гладкого эндоплазматического ретикулума, окружающей пластиду. Иногда под термином «лейкопласты» понимают любые неокрашенные пластиды, при этом выделяют следующие типы: амилопласты, элайопласты, протеинопласты.

    • Амилопласты — внешне похожи на пропластиды, но в строме содержатся гранулы крахмала. Амилопласты, как правило, присутствуют в запасающих органах растений, в частности в клубнях картофеля. В грависенсорных клетках корня амилопласты играют роль статолитов. Амилопласты высших растений могут превращаться в хлоропласты или хромопласты.
    • Элайопласты — служат для запасания жиров.
    • Протеинопласты — служат для запасания белков.
  • Этиопласты, или темновые пластиды, развиваются из пропластид в темноте, при освещении они превращаются в хлоропласты. В этиопластах отсутствует хлорофилл, но содержится большое количество протохлорофиллида. Липиды внутренних мембран стромы хранятся в форме рельефной мембранной структуры, называемой проламеллярным телом. Формирование квазикристаллической структуры проламеллярного тела происходит из-за отсутствия мембранных белков тилакоидов, необходимых для их формирования. Известно, что свет инициирует синтез белков тилакоидных мембран и хлорофилла из накопленного протохлорофиллида.
  • Хлоропласты — зелёные пластиды, основной функцией которых является фотосинтез. Хлоропласты как правило имеют элипсовидную форму и длину от 5 до 8 мкм. Количество хлоропластов в клетке различно: в клетке хлоренхимы листа Arabidopsis содержится около 120 хлоропластов, в губчатой хлоренхиме листа клещевины их около 20, клетка нитчатой морской водоросли Spirogyra содержит единственный лентовидный хлоропласт. Хлоропласты имеют хорошо развитую эндомембранную систему, в которой выделяют тилакоиды стромы и стопки тилакоидов — граны. Зелёная окраска хлоропластов обусловлена высоким содержанием основного пигмента фотосинтеза — хлорофилла. Помимо хлорофилла хлоропласты содержат различные каротиноиды. Набор пигментов, участвующих в фотосинтезе (и, соответственно окраска) различен у представителей разных таксонов.
  • Хромопласты — пластиды, окрашенные в жёлтый, красный или оранжевый цвет. Хромопласты могут развиваться из пропластид или повторно дифференцироваться из хлоропластов; также хромопласты могут редифференцироваться в хлоропласты. Окраска хромопластов связана с накоплением в них каротиноидов. Хромопласты определяют окраску осенних листьев, лепестков некоторых цветов (лютики, бархатцы), корнеплодов (морковь), созревших плодов (томат).

См.Также

Физико-химические методы анализа: общее понятие

Что собой представляют подобные способы идентификации соединений? Это такие методы, в основу которых положена прямая зависимость всех физических свойств вещества от его структурного химического состава. Так как эти показатели строго индивидуальны для каждого соединения, то физико-химические методы исследования крайне эффективны и дают 100 % результат при определении состава и прочих показателей.

Так, за основу могут быть взяты такие свойства вещества, как:

  • способность к светопоглощению;
  • теплопроводность;
  • электропроводность;
  • температура кипения;
  • плавления и прочие параметры.

Физико-химические методы исследования имеют существенное отличие от чисто химических способов идентификации веществ. В результате их работы не происходит реакция, то есть превращения вещества как обратимого, так и необратимого. Как правило, соединения остаются нетронутыми как по массе, так и по составу.

Геном и белоксинтезирующая система пластид высших растений[править | править код]

Одним из доказательств происхождения пластид от древних цианобактерий служит схожесть их геномов, хотя пластидный геном (пластом) значительно меньше. Пластом высших растений представлен многокопийной кольцевой двуцепочечной ДНК (плДНК) размером от 75 до 290 тыс. п. н. В большинстве пластидных геномов присутствуют два инвертированных повтора (IRA и IRB), разделяющих молекулу ДНК на две уникальные области: большую (LSR) и малую (SSR). В инвертированных повторах содержатся гены всех четырёх рРНК (4,5S, 5S, 16S и 23S), входящих в состав пластидных рибосом, а также гены некоторых тРНК. Голосеменные и растения семейства Бобовые не содержат инвертированных повторов. Многие пластидные гены организованы в опероны — группы генов, считывающихся с общего промотора. Некоторые пластидные гены имеют экзон-интронную структуру. В пластидах кодируются гены, обслуживающие процессы транскрипции и трансляции (гены «домашнего хозяйства»), а также некоторые гены, обеспечивающие выполнение функций пластид в клетке, прежде всего фотосинтез.

Транскрипцию в пластидах обеспечивают РНК-полимеразы двух типов:

  1. Мультисубъединичная пластидная РНК-полимераза бактериального типа состоит из двух α-субъединиц и по одной β, β’, β» (все эти субъединицы кодируются в пластидном геноме). Однако для её активации необходимо присутствие σ-субъединицы, которая кодируется в ядре растительной клетки и импортируется в пластиды при освещении. Таким образом пластидная РНК-полимераза активна только на свету. Пластидная РНК-полимераза может обеспечивать транскрипцию с генов с эубактериальными промоторами (большинство генов фотосинтетических белков), а также с генов, имеющих универсальные промоторы.
  2. Мономерная РНК-полимераза фагового типа кодируется в ядре и белок имеет специальную сигнальную последовательность, обеспечивающую импорт в пластиды. Обеспечивает транскрипцию генов «домашнего хозяйства» (в частности гены rif-оперона, который содержит гены пластидной РНК-полимеразы).

Процесс созревания транскриптов пластид имеет свои особенности. В частности, пластидные интроны способны к автосплайсингу, то есть вырезание интронов происходит автокаталитически. Кроме того, в пластидах происходит редактирование РНК — химическая модификация оснований РНК, приводящая к изменению закодированной информации (наиболее часто происходит замена цитидина на уридин). Большинство зрелых мРНК пластид содержат в 3′-некодирующей области шпильку, защищающую её от рибонуклеаз.

Пластиды имеют рибосомы прокариотического типа с коэффициентом седиментации 70S (с меньшим количеством белков, по сравнению с эукариотическими рибосомами). Рибосомы содержат четыре типа рРНК, три из которых гомологичны эубактериальным 5S, 16S и 23S, а 4,5S рРНК гомологична 3′-участку 23S-рРНК.

Аппарат Гольджи

Аппарат Гольджи — органоид, имеющий универсальное распространение во всех разновидностях эукариотических клеток. Представляет собой многоярусную систему плоских мембранных мешочков, которые по периферии утолщаются и образуют пузырчатые отростки. Он чаще всего расположен вблизи ядра.

Аппарат Гольджи

В состав аппарата Гольджи обязательно входит система мелких пузырьков (везикул), которые отшнуровываются от утолщённых цистерн (диски) и располагаются по периферии этой структуры. Эти пузырьки играют роль внутриклеточной транспортной системы специфических секторных гранул, могут служить источником клеточных лизосом.

Функции аппарата Гольджи состоят также в накоплении, сепарации и выделении за пределы клетки с помощью пузырьков продуктов внутриклеточного синтеза, продуктов распада, токсических веществ. Продукты синтетической деятельности клетки, а также различные вещества, поступающие в клетку из окружающей среды по каналам эндоплазматической сети, транспортируются к аппарату Гольджи, накапливаются в этом органоиде, а затем в виде капелек или зёрен поступают в цитоплазму и либо используются самой клеткой, либо выводятся наружу. В растительных клетках Аппарат Гольджи содержит ферменты синтеза полисахаридов и сам полисахаридный материал, который используется для построения клеточной оболочки. Предполагают, что он участвует в образовании вакуолей. Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1897 году.

Создание тротила

В 1863 году химик Юлиус Вильбрантд, работавший в университете Гёттингена, получил интересный результат в ходе одного из экспериментов с остатками коксованного угля и нефтью. Полученный состав прекрасно горел, выделяя яркое пламя и много черного дыма. Вильбратд окрестил свой состав тринитротолуолом, однако на несколько десятков лет полученное вещество оказалось забыто.

В начале 1890-х о составе пришлось вспомнить в связи с развитием вооруженных сил. Находившиеся на тот момент на вооружении армий мира взрывчатые вещества (ВВ) обладали множеством минусов.

Динамит отличается высокой чувствительностью, и снаряжать им боеприпасы опасно для самих работников фабрик, не говоря о войсках, а о транспортировке во время военных действий, вообще не приходилось и думать.

Гексоген и пикриновая кислота также крайне чувствительны, мелинит вступает в активную связь с металлом оболочки снаряда, основанные на селитре и аммиаке ВВ отличаются гигроскопичностью и быстро выходят из строя.

На фоне этих веществ тринитротолуол был едва ли не идеальной взрывчаткой, а развитие нефтяной промышленности, обеспечило его быстрое распространение.

В 1891 году началось промышленное производство вещества, но только с 1902 года толу удалось частично сменить пикриновую кислоту в боеприпасах германских вооруженных сил.

Большую роль в этом сыграл химик Генрих Каст, по сути доведший до конца работу Вильбрантда и давший возможность производить тринитротолуол в промышленных масштабах.

Происхождение слова простое, это сокращенная форма от полного названия взрывчатки.

Шило в мешке утаить невозможно, поэтому уже в 1909 году в России на Охтинском заводе стала производиться эта секретная новая взрывчатка. Первая Мировая война прошла под знаком равенства пикриновой кислоты и тола в качестве ВВ, но в послевоенный период и в эпоху Второй Мировой войны тротил стал главной взрывчаткой на планете.

Производство тротила сильно менялось с течением времени.

Первоначально толуол, продукт, получаемый из нефти, нитровали в три стадии с последующей очисткой и кристаллизацией с помощью этилового спирта. Трудоемкий процесс, в котором было задействовано ценное, «дефицитное» сырье, изменили в 1932-1933 годах.

Модернизация позволила пустить спирт на более важные нужды, его заменили кислотой. Сильно мешал факт прерывающегося производства взрывчатки. В 1936 году был опробована и принята технология производства тринитротолуола непрерывного типа в четыре фазы. В послевоенное время создавались новые способы непрерывного производства тротила для армии и промышленности.

Особенностью их было использование концентрированных кислот. В этом отечественная промышленность серьезно обгоняла западных конкурентов, так как и в Германии, и в Англии, и в США производство ВВ было не так дешево и эффективно как в СССР, и, как правило, было прерывающегося типа.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector