Радиолокационные станции: история и основные принципы работы

Содержание:

Двигатель ЗИЛ-164

Двигатель — у автомобиля ЗиЛ-164А он имеет маховик, приспособленный для работы с однодисковым сцеплением. На двигатель был установлен карбюратор К-82М, полностью взаимозаменяемый с К-82, а также новый топливный насос повышенной производительности без отстойника, унифицированный по крепежным местам со старым насосом. Производительность нового насоса 125 л/час — вместо 60 л/час у старого. Был использован вентилятор радиатора с увеличенным до 380 углом установки лопастей вместо применявшегося ранее с углом 300 , а также новый кожух вентилятора. Вместо трубчато-пластинчатого радиатора установлен трубчато-ленточный (змейковый радатор), полностью взаимозаменяемый со старым.

Расширение возможностей

Как отмечают аналитики, развитие системы загоризонтной радиолокации — часть усилий радиотехнических войск Воздушно-космических сил России в рамках радиолокационной разведки в целом.

Для наращивания возможностей «по контролю использования воздушного пространства» России были созданы и уже применяются новейшие образцы радиолокационного вооружения, в частности комплекс «Наблюдатель ФСР и КВП», сообщил начальник радиотехнических войск Воздушно-космических сил РФ.

«Комплекс автоматических средств наблюдения и обработки информации о воздушной обстановке «Наблюдатель ФСР и КВП» предназначен для контроля использования воздушного пространства, обеспечения полётов воздушных судов и является первой в истории радиотехнических войск системой, в составе которой работают автоматические радиолокационные модули, не требующие участия операторов», — отметил Андрей Кобан.

  • Российские военнослужащие радиотехнических войск на учениях
  • РИА Новости

По словам генерал-майора, «возможности каждого радиолокационного модуля позволяют в автоматическом режиме вести радиолокационную разведку в радиусе до 450 км».

«В состав радиолокационного комплекса может входить до 20 модулей, что позволяет в автоматическом режиме контролировать полёты авиации над территорией площадью до 300 тыс. кв. км. Применение комплекса «Наблюдатель ФСР и КВП» совместно с системой обработки информации «ВКАО-М» позволяет существенно повысить уровень автоматизации процессов контроля воздушного пространства Российской Федерации», — заявил он, добавив, что такие комплексы уже «развёрнуты в границах Центрального промышленного района страны, где интенсивность воздушного движения наиболее высокая».

Кроме того, Кобан сообщил, что «продолжается работа по усилению контроля воздушного пространства в Арктической зоне и на востоке страны».

«В этом регионе несут боевое дежурство подразделения РТВ, оснащённые современными комплексами средств автоматизации «Фундамент-М» и РЛС дежурного и боевого режима, такими как «Небо-М», «Подлёт», «Каста-2-2», «Сопка» и другие», — отметил генерал-майор.

Ранее Минобороны сообщало, что два радиотехнических полка объединения ВВС и ПВО Центрального военного округа получили в этом году модернизированную подвижную радиолокационную станцию П-18РТ «Терек». Как уточняло оборонное ведомство, РЛС «позволяет в автоматическом режиме обнаруживать цель, отслеживать её координаты, а также пеленговать устройства постановки помех, определять их тактико-технические характеристики и выдавать информацию на командный пункт».

Также по теме

Преграда для невидимок: какими возможностями обладает российская РЛС «Прима»

«Рособоронэкспорт» начал продвижение на внешний рынок высокомобильной радиолокационной станции разведки и целеуказания «Прима». По…

В конце 2019 года в радиотехнические войска объединения ВВС и ПВО Восточного военного округа поступила радиолокационная станция 19Ж6П.

«Эта РЛС предназначена для обнаружения, опознавания и сопровождения воздушных целей, в том числе крылатых ракет, при воздействии активных и пассивных помех, а также отражений от земной поверхности и метеообразований», — говорилось в сообщении Минобороны.

Отмечалось также, что в новой станции была в том числе «увеличена дальность обнаружения воздушных объектов, введены новые режимы работы, выполнена автоматизация процессов сопровождения, инициализации и сопровождения целей».

По словам Ивана Коновалова, для создания эшелонированной системы обороны у России имеются все средства и наработки.

Михаил Ходарёнок, в свою очередь, добавил, что в перспективе всеракурсное радиолокационное поле будет обеспечено именно станциями загоризонтного обнаружения.

«Это существенно увеличит возможности радиотехнических войск, в том числе по ведению радиолокационной разведки», — заключил он.

История

Доступность недорогих микропроцессоров и развитие передовых компьютерных технологий в течение 1970-х и 1980-х годов сделали возможным применение компьютерных технологий для улучшения коммерческих морских радарных систем. Производители радаров использовали эту технологию для создания средств автоматической радиолокационной прокладки. ARPA — это компьютерные системы обработки радиолокационных данных, которые генерируют прогнозные векторы и другую информацию о движении судов.

Международная морская организация (ИМО) установила определенные стандарты , вносящие изменения в Международную конвенцию по охране человеческой жизни на море требований в отношении переноса соответствующих автоматизированных радиолокационных черчения средств. Основная функция ARPA может быть резюмирована в заявлении, содержащемся в Стандартах производительности IMO. В нем говорится о требовании ARPA: «улучшить стандарт предотвращения столкновений на море: уменьшить рабочую нагрузку на наблюдателей, позволив им автоматически получать информацию, чтобы они могли работать с несколькими целями так же хорошо, как если бы они вручную наносили на карту одну цель» . Как мы видим из этого заявления, основными преимуществами ARPA являются снижение нагрузки на персонал моста и более полная и быстрая информация по выбранным целям.

Типичная функция ARPA дает представление о текущей ситуации и использует компьютерные технологии для прогнозирования будущих ситуаций. ARPA оценивает риск столкновения и позволяет оператору видеть предлагаемые маневры на собственном судне.

Хотя на рынке доступно множество различных моделей ARPA, обычно предоставляются следующие функции:

  1. Представление радара истинного или относительного движения.
  2. Автоматическое обнаружение целей плюс ручное обнаружение.
  3. Цифровое считывание обнаруженных целей, которое обеспечивает курс, скорость, дальность, пеленг, ближайшую точку сближения (CPA и время до CPA (TCPA).
  4. Возможность отображать информацию об оценке столкновения непосредственно на индикаторе планового положения (PPI) с использованием векторов (истинных или относительных) или графического отображения прогнозируемой зоны опасности (PAD).
  5. Возможность выполнять пробные маневры, включая изменение курса, изменение скорости и комбинированное изменение курса / скорости.
  6. Автоматическая стабилизация грунта для навигационных целей. ARPA обрабатывает радиолокационную информацию намного быстрее, чем обычный радар, но все же имеет те же ограничения. Данные ARPA настолько точны, насколько точны данные, поступающие из таких входов, как гироскоп и журнал скорости.

Конструкционно этот грузовик можно разделить на четыре части

См. также

Похожие статьи

Литература

  • Erickson, John; «Radiolocation and the air defense problem: The design and development of Soviet Radar 1934-40», Social Studies of Science, vol. 2, pp. 241—263, 1972
  • Ширман Я. Д., Голиков В. Н., Бусыгин И. Н., Костин Г. А. Теоретические основы радиолокации / Ширман Я. Д.. — М.: Советское радио, 1970. — 559 с.
  • Справочник по радиолокации / Сколник М.И.. — М., 2014. — 1352 с. — ISBN 978-5-94836-381-3.
  • Справочник по радиолокации / Сколник М.И.. — М., 2014. — 1352 с. — ISBN 978-5-94836-381-3.
  • Бакут П. А., Большаков И. А., Герасимов Б. М., Курикша А. А., Репин В. Г., Тартаковский Г. П., Широков В. В. Вопросы статистической теории радиолокации. — М.: Советское радио, 1963. — 423 с.

Французский триумф

В судьбе «Юности» звездный 1967 год мог стать и переломным. В начале мая Советский Союз впервые принял участие в ХVIII Международной автобусной неделе, проходившей во французском г. Ницца. Будучи крупнейшим в своей области специализированным мероприятием, она включала XV туристическое ралли из разных городов Европы в Ниццу, различные виды конкурсов и технические испытания автобусов. Наряду с ЗИЛ-118 интересы страны представляли ПАЗ-665 «Турист», ЛАЗ-699 «Турист» и ЛАЗ «Украина». Соперниками наших машин были самые именитые конкуренты со всего света.

Подготавливая «Юность» к столь престижным состязаниям, автозаводцы верили в свое детище, но что успех будет носить триумфальный характер, никто не мог даже предположить. Победителем ралли, завоевавшим главный большой приз Президента Французской республики (Севрскую вазу), был признан Интурист СССР за организацию и проведение маршрута ЗИЛ-118. За участие в этом же соревновании представителям ЗИЛа были присуждены бронзовая медаль Комиссариата по туризму и вымпел инициативного туристического комитета г. Ниццы.

В конкурсах и технических испытаниях участвовало 129 машин 50 фирм. «Юность» доказала, что может на равных бороться с любым соперником. В ее копилке оказались самые значимые награды. Большой приз конкурса – кубок Оргкомитета – машина получила по совокупности тягово-скоростных свойств, уровню внешнего шума и плавности хода. В конкурсе кузовов ЗИЛ-118 вместе с другими отечественными автобусами присудили серебряную медаль Французской федерации кузовостроения. Всего же наша машина увезла на родину 12 призов, это не удавалось ни одному отечественному автомобилю ни до, ни после «Юности».

Советским автобусом самым серьезным образом заинтересовались многие зарубежные компании. Западные бизнесмены быстро смекнули, какие выгоды может принести машина, не имеющая мировых аналогов. Но представителям Автоэкспорта в ответ на предложения приобрести крупные партии ЗИЛ-118 оставалось лишь разводить руками, ведь в наличии было всего 7 машин, построенных практически вручную.

Громкие успехи «Юности» и ее международное признание так и не привели к выделению средств на серийное производство. Хотя массовый выпуск автобусов мог бы заметно удешевить себестоимость и правительственных лимузинов.

Отзывы

Эстафета переходит в Германию

В 1904 году немец Христиан Хюльсмейер запатентовал устройство под названием телемобилоскоп. Этот прибор предполагалось использовать в судоходстве для обнаружения кораблей в условиях плохой видимости. Телемобилескоп был построен на основе искрового генератора радиоволн и в своей последней версии мог находить суда на расстоянии до 3 км. Однако устройством не заинтересовались ни гражданские, ни военные, предпочитая по старинке пользоваться на судах паровыми ревунами. По сути прибор Хюльсмайера был еще не радаром, а радиодетектором. Существовавшие на тот момент технологии еще не позволяли построить полноценный радиолокатор.

Схема установки антенны радиолокатора «Зеетакт» на немецкой подводной лодке

В 1920-1930-е годы немецкие ученые и инженеры достигли больших успехов в развитии военной радиолокации. В 1935 году физик Рудольф Кунхольд из Института технологий связи германских ВМС представил радиолокационный прибор с электронно-лучевым дисплеем. К концу 1930-х на его основе были созданы оперативные радиолокаторы «Зеетакт» для флота и «Фрейя» для ПВО.

Однако, несмотря на значительные научные результаты, руководство Третьего рейха рассчитывало на блицкриг и не спешило развивать национальную сеть радаров, считая их преимущественно оборонительными средствами. К 1940 году Германия располагала лишь небольшой сетью станций дальнего обнаружения. И только к концу 1943 года территорию Германии полностью накрыли защитным радиолокационным «колпаком».  

Связь с другими отраслями науки

Основным фактором, ограничивающим технические характеристики локаторов, является малая мощность принимаемого сигнала. При этом мощность принимаемого сигнала убывает как четвёртая степень дальности (то есть, чтобы увеличить дальность действия локатора в 10 раз нужно увеличить мощность передатчика в 10000 раз). Естественно, на этом пути быстро пришли к пределам, преодолеть которые было далеко не просто. Уже в самом начале развития был осознан тот факт, что имеет значение не сама мощность принимаемого сигнала, а его заметность на фоне шумов приёмника. Снижение шумов приёмника также было ограничено естественными шумами элементов приёмника, например тепловыми. Данный тупик был преодолён на пути усложнения методов обработки принятого сигнала и связанного с этим усложнения формы применяемых сигналов. Развитие радиолокации как научной отрасли знаний шло одновременно с развитием кибернетики и теории информации, и потребовались бы специальные исследования, чтобы решить, где именно были получены первые результаты. Следует отметить появление понятия сигнала, который позволил отвлечься от конкретных физических процессов в приёмнике, таких как напряжение и ток, и позволил решать стоящие проблемы как математическую задачу о поиске наилучших функциональных преобразованиях функций времени.

Одной из первых работ в этой области была работа В. А. Котельникова об оптимальном приёме сигнала, то есть наилучшем в условии шумов методе обработки сигнала. В результате было доказано, что качество приёма зависит не от мощности сигнала, а от его энергии, то есть произведения мощности на время, таким образом, появилась доказанная возможность увеличения дальности действия за счёт увеличения длительности сигналов, в пределе до непрерывного излучения. Значительным шагом вперед стало отчётливое применение в технике методов статистической теории решений (критерий Неймана-Пирсона) и принятие того факта, что исправное устройство может работать с определённой долей вероятности. Для того, чтобы радиолокационный сигнал при большой длительности позволял измерять дальность и скорость с высокой точностью, потребовались сложные сигналы, в отличие от простых радиолокационных импульсов, изменяющие какие-либо характеристики в процессе генерации. Так. сигналы с линейной частотной модуляцией изменяют частоту колебаний в течение одного импульса, сигналы с фазовой манипуляцией скачкообразно изменяют фазу сигнала, обычно на 180 градусов. При создании сложных сигналов было сформулировано понятие функции неопределённости сигнала, показывающей связь точности измерений дальности и скорости. Необходимость повышения точности измерения параметров стимулировало развитие различных методов фильтрации результатов измерений, например, методов оптимальной нелинейной фильтрации, которые явились обобщением фильтра Калмана на нелинейные задачи. В итоге всех этих разработок теоретическая радиолокация оформилась как самостоятельная сильно математизированная отрасль знаний, в которой значительную роль имеют формализованные методы синтеза, то есть проектирование ведётся в известной мере «на кончике пера».

История

Корабль в качестве радиолокационного дозора впервые применён в начале Великой Отечественной войны на Черноморском флоте в районе Севастополя. Опытная РЛС Редут-К была установлена на крейсере «Молотов». С 22 июня по 1 ноября 1941 года крейсер базировался в Севастополе, участвуя в ПВО Черноморского флота. 24 июня установлена телефонная связь между кораблём, штабом флота и командным пунктом ПВО, благодаря которой данные станции «Редут-К» сообщались в штаб флота по кабелю. Станция работала иногда по 20 часов в сутки, но ни разу не выходила из строя. В судовом журнале крейсера записано:

С августа 1942 года и по конец 1943 года, в связи с повреждением «Молотова», РЛС работала в Поти в качестве берегового поста наблюдения. С 1 июля 1941 по 18 декабря 1943 года «Редут-К» за 1269 включений обнаружил 9383 самолёта. Командир отряда лёгких сил Черноморского флота Басистый Н. Е. в воспоминаниях упоминает «Редут-К»:

Но несмотря на известное несовершенство, «Редут-К» принёс немалую пользу флоту. Крейсер «Молотов» не раз заблаговременно оповещал корабли в Севастополе и других базах о приближении самолётов противника. Мы не зря гордились этой технической новинкой.

Массово корабли радиолокационного дозора впервые применены во Второй мировой войне в военно-морских силах США (ВМС США), чтобы помочь союзникам подойти к Японии. Количество радиолокационных дозоров значительно увеличено после первого большого участия японских самолётов-камикадзе в октябре 1944 года в сражении в заливе Лейте. В первую очередь в радиолокационных дозорах, с некоторыми изменениями, применены эскадренные миноносцы типов «Флетчер» и «Аллен М. Самнер». Позже на них установлены дополнительные радары и средства наведения истребителей, вместе с более мощным зенитным вооружением малого калибра для самообороны, как правило, жертвуя торпедными аппаратами, чтобы освободить место для нового вооружения, особенно для радаров обнаружения целей на больших высотах. Развёртываемые на расстоянии от своих сил, которые должны были быть предупреждены с вероятных направлений атак японцев, радиолокационные дозоры кораблей на направлениях ближайших японских аэродромов. Так они обычно из судов первыми обнаруживали подходящие группы камикадзе и часто были ими атакованы с тяжёлыми последствиями.

Наибольшее количество англо-американских корабельных радиолокационных дозоров было в битве за Окинаву. Из 15 РЛС радиолокационного дозора вокруг Окинавы было создано кольцо, чтобы перехватить все возможные подходы к острову и к союзному флоту у острова. Из 101 эскаденных миноносцев, назначенных для радиолокационного дозора, от атак камикадзе 10 потоплены и 32 повреждены. На 88 LCS(L) назначеных пикет станции 2 потоплены и 11 повреждены камикадзе, а из 11 LSM(R) три потопленных и два повреждённых.

Немецкие и японские Второй мировой войны

С 1943 года в Кригсмарине (германский военно-морской флот Третьего рейха) действовало несколько судов наведения ночных истребителей с РЛС обнаружения (Nachtjagdleitschiffe), в том числе второе судно наведения ночных истребителей NJL Togo, которое было с РЛС обнаружения FuMG А1 (Фрейя), с радаром наведения Вюрцбург-Ризе и с оборудованием связи с ночными истребителями. С октября 1943 года NJL Togo в Балтийском море в оперативном подчинении Люфтваффе (германских военно-воздушных сил 1930-х — 40-х годов). В марте 1944 года оно прибыло в Финский залив, чтобы обеспечить прикрытия Таллина и Хельсинки ночной истребительной авиацией, после трёх сильных советских бомбардировок Хельсинки. Кроме того, императорский флот Японии второй мировой войны в первой половине 1945 года немного изменил две подводные лодки типа ha-101 (Sen-Yuso-Sho) для использования как средство радиолокационного обнаружения, но в июне 1945 года снова изменил их в ещё более важные подводные лодки-танкеры[источник не указан 189 дней].

Первые советские радары

В 1920-е годы ученые в СССР создали импульсную радиолокационную установку и смогли с помощью отраженного радиосигнала измерить расстояние до ионосферы. В 1925 году физики Введенский, Симанов, Халезов и Аренберг указали на возможность применения для радиолокации ультракоротких радиоволн. А в 1934 году в Ленинграде начались первые полноценные опыты с аппаратурой радиообнаружения – в январе радиолокационным методом на расстоянии 600 метров был найден самолет, летящий на высоте 150 метров.

Оборудование было создано в Центральной радиолаборатории группой Ю.К. Коровина при поддержке Ленинградского электротехнического института. Руководил экспериментом военный инженер М.М. Лобанов, который сыграл ключевую роль в становлении радиолокационного направления в промышленности. В том же 1934 году на Ленинградском радиозаводе были выпущены опытные образцы радиолокационных станций (РЛС) «Вега» и «Конус» для системы радиообнаружения самолетов «Электровизор» ученого П.К. Ощепкова. Таким образом, 1934 год можно считать годом рождения первого отечественного радара.

РЛС дальнего обнаружения «РУС-2»

В 1938 году начинается серийное производство РЛС РУС-1 и РУС-2 «Редут», которые станут основой противовоздушной обороны в начале Великой Отечественной войны. Благодаря установленной на крейсере «Молотов» радиолокационной станции были отражены первые атаки немецких бомбардировщиков на Севастополь 22 июня 1941 года. А месяц спустя комплекс РУС-2, расположенный в 100 км от Москвы, обнаружил 200 самолетов, летящих бомбить столицу. Тогда атака была отражена, немцы развернулись, потеряв 22 машины. 

В работе над первыми станциями РУС-1 принимал участие выдающийся физик А.А. Пистолькорс, создатель научной школы радиоэлектроники. Станция РУС-2 «Редут» выпускалась на заводе №339 и стала самой массовой РЛС времен войны.
 

Оценки

Отличия ЗИЛ-164 от ЗИС-150

Новый грузовик создавался на заводе имени Лихачёва в качестве приемника ЗИС-150, который на то время считался достаточно устаревшим. Хотя последние модификации ЗИС-150 практически не отличались от первых ЗИЛ-164, партия требовала не очередной модернизации, а создания абсолютно новой модели, поэтому в 1957 году на базе ЗИС конструкторы создали новый автомобиль.

Его внешность сразу наводила мысли о том, что это модернизированный ЗИС, но некоторые отличия в конструкции моделей всё же имелись:

  • Рама автомобиля стала мощнее;
  • Двигатель тоже был более мощным;
  • Установили карбюратор новой модели;
  • Появились телескопические амортизаторы;
  • Появилась системе обдува ветровых стёкол;
  • Отопитель новой конструкции.

Кроме того, в конструкцию автомобиля было внесено ещё множество различных мелких изменений, которые незаметны с первого взгляда. Например, новый радиатор, более высокие крылья и т.п.

Машина стала выпускаться серийно с 1957 года, и выпускалась до 1964 года. В 1961 году произошла серьёзная модернизация автомобиля, так как на заводе готовились к выпуску совершенно нового грузовика ЗИЛ-130. С 1961 года завод выпускал модель ЗИЛ-164А, который получил часть узлов от новой, более совершенной модели. Последняя модификация получила новое однодисковое сцепление, карданы, тормозной кран. Кроме того, КПП ЗИЛ-164А тоже была взята от модели с индексом 130.

В некоторых источниках указывается, что первые модификации ЗИЛ-164 назывались ЗИС, но это неправда. Завод переименовали в 1956 году, первые автомобили сошли с конвейера только через год после этого, а вот ЗИС-150 действительно назывался ЗИЛ. Последние модели, которые выпускались в 1956 году, имели надпись «ЗИЛ».

Модификации

ВОГ-25ИН

Индекс ГРАУ — 7П17И

. Практический выстрел с гранатой в инертном снаряжении, применяется для тренировок и обучения стрельбе,а также приведения ГП-25 к нормальному бою и проверке боя.

ВУС-25

(индекс 7П44У) — учебная граната, применяется для тренировок и обучения.

ВОГ-25П

Индекс ГРАУ — 7П24

, шифр «Подкидыш». Выстрел с «подпрыгивающей» осколочной гранатой, оснащённый взрывателемВГМ-П с вышибным зарядом и пиротехническим замедлителем. Принят на вооружение в 1979 году.

При попадании в преграду выстрел подскакивает и взрывается в воздухе на высоте около 1,5 метров. В сравнении с ВОГ-25, «подпрыгивающий» боеприпас позволяет эффективнее поражать лежащего и находящегося в траншее или окопе противника.

Описание:

  • Калибр 40 мм
  • Начальная скорость 76 м/с
  • Масса 275 г
  • Масса ВВ 42 г
  • Длина 125 мм
  • Дистанция взведения 10 — 40 м
  • Время самоликвидации не менее 14 с
  • Средняя высота разрыва 75 см

«Гвоздь»

40-мм выстрел «Гвоздь»

с газовой гранатой — предназначен для создания газового облака с непереносимо-допустимой концентрацией ирританта (раздражающего вещества) CS. Состоит на вооружении МВД РФ.

40-мм выстрел с дымовой гранатой ВДГ-40 «Нагар»

— применяется для постановки дымовой завесы.

ВОГ-25М

Модернизированный вариант выстрела ВОГ-25 с осколочной гранатой, частично унифицирован с ВОГ-25ПМ. Разработан в начале 2000-х годов.

ВОГ-25ПМ

Модернизированный вариант выстрела ВОГ-25П с «подпрыгивающей» осколочной гранатой, частично унифицирован с ВОГ-25М. Разработан в начале 2000-х годов.

АСЗ-40

40-мм выстрел акустического действия АСЗ-40 «Свирель»

. Светозвуковая граната нелетального действия служит для временного подавления психоволевой устойчивости живой силы противника. Состоит на вооружении МВД РФ.

В настоящее время имеет место тенденция к дальнейшему расширению типов боеприпасов. Так, на международной оружейной выставке «Defendory-2006» были представлены новые виды гранат:

  • ВГ-40МД — выстрел с дымовой гранатой
  • ВГС-40-1 — выстрел с сигнальной гранатой (красный огонь)
  • ВГС-40-2 — выстрел с сигнальной гранатой (зеленый огонь)
  • ВГ-40И — выстрел с осветительной гранатой

Однако нет сведений, что эти боеприпасы были приняты на вооружение или находятся в серийном производстве.

Литература

Становление радиолокации в Российской Империи и в СССР

В преддверии и во время Первой Мировой войны главные усилия российских радиоинженеров прикладывались к развитию и усовершенствованию радиоразведки за врагом. Для этого проводились определённые мероприятия по сбору сведений о радиосвязи иностранных государств. Ещё в 1914 г. нашим соотечественником, лейтенантом Балтийского флота И.И. Ренгартеном, проводились работы по макетированию радиопеленгатора.

Иван Иванович Ренгартен

В самом начале войны командованием Балтийского флота было принято решение об установке в Кильконде на о. Эзель первого разведывательного радиопеленгатора (РРП). Идею этого РРП предложил И. Ренгартен, им же была разработана и его конструкция. Береговой РРП системы Ренгартена имел антенну зонтичного типа, состоящую из 16 или 32 лучей-радиусов, ориентированных на местности согласно компасным румбам, почему иногда именовался компасной радиостанцией, или радиостанцией компасного типа. Радиопеленгатор в Кильконде начал решать радиоразведывательные задачи.

В СССР идеи радиолокации продвигал с 1932 г. научный сотрудник Ленинградского электрофизического института (ЛЭФИ) П.К. Ощепков, позднее предложивший использовать импульсное излучение. Идея овладела военными, и 16 января 1934 г. в Ленинградском физико-техническом институте (ЛФТИ) под председательством академика А.Ф. Иоффе состоялось совещание, на котором представители ПВО РККА поставили задачу обнаружения самолётов на высотах до 10 и дальности до 50 км в любое время суток и в любых погодных условиях.

Вторая Мировая война

Вторая Мировая война позволила в полной мере проверить боевые качества радиолокационной техники в операциях на суше, в воздухе и на море, что предопределило формирование в вооруженных силах радиотехнических частей и подразделений.

С началом Великой Отечественной войны требования к средствам радиообнаружения для ПВО встали не формально в виде абстрактных тактико-технических условий, а как предельно ясная и зримо осязаемая каждым разработчиком необходимость помочь борьбе с авиацией врага. Радиолокационная промышленность тогда у нас почти отсутствовала. Но двигаться вперёд без радиолокационной аппаратуры было немыслимо.

4 июля 1943 г. вышло постановление Государственного Комитета обороны о создании Совета по радиолокации при ГКО. На следующий день после подписания этого постановления началась знаменитая Курская битва. А.И. Берг рассказывал:

Академик АН СССР, адмирал-инженер Аксель Иванович Берг

Председателем Совета был назначен член ГКО Г.М. Маленков. Инициатором создания этого Совета был Аксель Иванович Берг, он же был назначен заместителем председателя совета по радиолокации. Это постановление в истории советской радиолокации явилось важнейшим государственным актом, так как с образованием совета по радиолокации руководство развитием этой важнейшей отрасли техники и осуществление большого комплекса необходимых мероприятий было сосредоточено в одном месте и проводилось по непосредственным указаниям ЦК ВКП(б).

Гражданское применение

В сельском и лесном хозяйстве радиолокационные устройства незаменимы при получении информации о распределении и плотности растительных массивов, изучении структуры, параметров и видов почв, своевременном обнаружении очагов возгораний. В географии и геологии радиолокация используется для выполнения топографических и геоморфологических работ, определения структуры и состава пород, поиска месторождений полезных ископаемых. В гидрологии и океанографии радиолокационными методами осуществляется контроль состояния главных водных артерий страны, снегового и ледяного покрова, картографирование береговой линии.

Радиолокация — это незаменимый помощник метеорологов. РЛС легко выяснит состояние атмосферы на удалении десятков километров, а по анализу полученных данных составляется прогноз изменения погодных условий в той или иной местности.

См. также

Вторичный радиолокатор

Вторичная радиолокация используется в авиации для опознавания. Основная особенность — использование активного ответчика на самолётах.

Принцип действия вторичного радиолокатора несколько отличается от принципа первичного радиолокатора.
В основе устройства Вторичной радиолокационной станции лежат компоненты: передатчик, антенна, генераторы азимутальных меток, приёмник, сигнальный процессор, индикатор и самолётный ответчик с антенной.

Передатчик служит для формирования импульсов запроса в антенне на частоте 1030 МГц.

Антенна служит для излучения импульсов запроса и приёма отражённого сигнала. По стандартам ICAO для вторичной радиолокации антенна излучает на частоте 1030 МГц и принимает на частоте 1090 МГц.

Генераторы азимутальных меток служат для генерации азимутальных меток (англ. Azimuth Change Pulse, ACP) и метки Севера (англ. Azimuth Reference Pulse, ARP). За один оборот антенны РЛС генерируется 4096 малых азимутальных меток (для старых систем) или 16384 улучшенных малых азимутальных меток (англ. Improved Azimuth Change pulse, IACP — для новых систем), а также одна метка Севера. Метка севера приходит с генератора азимутальных меток при таком положении антенны, когда она направлена на Север, а малые азимутальные метки служат для отсчёта угла разворота антенны.

Приёмник служит для приёма импульсов на частоте 1090 МГц.

Сигнальный процессор служит для обработки принятых сигналов.

Индикатор служит для отображения обработанной информации.

Самолётный ответчик с антенной служит для передачи содержащего дополнительную информацию импульсного радиосигнала обратно в сторону РЛС по запросу.

Принцип действия вторичного радиолокатора заключается в использовании энергии самолётного ответчика для определения положения воздушного судна. РЛС облучает окружающее пространства запросными импульсами P1 и P3, а также импульсом подавления P2 на частоте 1030 МГц. Оборудованные ответчиками воздушные суда, находящиеся в зоне действия луча запроса, при получении запросных импульсов, если действует условие P1,P3>P2, отвечают запросившей РЛС серией кодированных импульсов на частоте 1090 МГц, в которых содержится дополнительная информация о номере борта, высоте и так далее. Ответ самолётного ответчика зависит от режима запроса РЛС, а режим запроса определяется интервалом времени между запросными импульсами P1 и P3, например, в режиме запроса А (mode A) интервал времени между запросными импульсами станции P1 и P3 равен 8 микросекундам и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свой номер борта.

В режиме запроса C (mode C) интервал времени между запросными импульсами станции равен 21 микросекунде и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свою высоту.
Также РЛС может посылать запрос в смешанном режиме, например, Режим А, Режим С, Режим А, Режим С.
Азимут воздушного судна определяется углом поворота антенны, который, в свою очередь, определяется путём подсчёта малых азимутальных меток.

Дальность определяется по задержке пришедшего ответа. Если воздушное судно находится в зоне действия боковых лепестков, а не основного луча, или находится сзади антенны, то ответчик воздушного судна при получении запроса от РЛС получит на своём входе условие, что импульсы P1,P3<P2, то есть импульс подавления больше импульсов запроса. В этом случае ответчик запирается и не отвечает на запрос.

Принятый от ответчика сигнал обрабатывается приёмником РЛС, затем поступает на сигнальный процессор, который проводит обработку сигналов и выдачу информации конечному потребителю и (или) на контрольный индикатор.

Плюсы вторичной РЛС:

  • более высокая точность;
  • дополнительная информация о воздушном судне (номер борта, высота);
  • малая по сравнению с первичными РЛС мощность излучения;
  • большая дальность обнаружения.

Легкий бронеавтомобиль ФАИ 1933 года

Основные методы радиолокации

РЛС непрерывного излучения

Используются в основном для определения радиальной скорости движущегося объекта (использует эффект Доплера). Достоинством РЛС такого типа является дешевизна и простота использования, однако в таких РЛС сильно затруднено измерение расстояния до объекта.

Пример: простейший радар для определения скорости автомобиля.

Импульсный метод радиолокации

При импульсном методе радиолокации передатчики генерируют колебания в виде кратковременных импульсов, за которыми следуют сравнительно длительные паузы. Причём длительность паузы выбирается исходя из дальности действия РЛС Dmax.

T>2Dmaxc{\displaystyle T>{2D_{max} \over c}}

Сущность метода состоит в следующем:

Передающее устройство РЛС излучает энергию не непрерывно, а кратковременно, строго периодически повторяющимися импульсами, в паузах между которыми происходит приём отражённых импульсов приёмным устройством той же РЛС.
Таким образом, импульсная работа РЛС даёт возможность разделить во времени мощный зондирующий импульс, излучаемый передатчиком и значительно менее мощный эхо-сигнал.
Измерение дальности до цели сводится к измерению отрезка времени между моментом излучения импульса и моментом приёма, то есть временем движения импульса до цели и обратно.

Уничтожение ответчика

Аппаратура государственного опознавания является секретным изделием, и специалисты, работающие с ней, имеют соответствующий допуск по гостайне. Попадание рабочего ответчика к вероятному или потенциальному противнику создаёт большую проблему. Так, например, угон 6 сентября 1976 года самолёта МиГ-25 в Японию послужил толчком к экстренной замене системы «Кремний» на новую систему «Пароль». Замена системы опознавания является достаточно трудоёмким и дорогостоящим производственным процессом, а в масштабах всей страны это мероприятие растянулась на десятилетие. В связи с распадом СССР гражданские самолёты были переоборудованы лишь частично.

На летательных аппаратах обычно предусмотрено автоматическое либо принудительное физическое уничтожение блока с информацией методом подрыва пиропатроном. Принудительный подрыв включается лётчиком или членом экипажа. Автоматический подрыв срабатывает от инерционного датчика при падении (ударе) ЛА или от концевого выключателя при выстреле катапультного кресла.

Российский внедорожник ГАЗ-3106

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector