Невозможные космические объекты, но они существуют в реальности

Содержание:

Самая большое скопление квазаров: Громадная группа квазаров (Huge-LQG7)

Одним из крупнейших формирований во вселенском пространстве является скопление квазаров – космических объектов с высокой энергетикой, располагающихся в центральных частях галактик. Вышеупомянутое название получила группа из 73 предметных образований, расположенная на площади превышающей в длину 4 млрд. парсеков.

Скопление настолько мощной группы и аналогичных ей испускает столь массивное излучение (превышающее в 1000 раз мощность любого галактического скопления звезд), что по выводам ученых является предтечей и источником образования самых крупнейших объектов, а может и самих молодых Вселенных.

На картинке крестиками и кружочками обозначено расположение квазаров.

Великая стена Слоуна

Впервые Великая стена Слоуна была обнаружена в 2003 году в рамках проекта Слоановского цифрового небесного обзора — научного картографирования сотен миллионов галактик, для определения наличия самых крупных объектов во Вселенной. Великая стена Слоуна является гигантским галактическим филаментом, состоящим из нескольких сверхскоплений, распределяющихся по Вселенной, как щупальца гигантского осьминога. Благодаря своей длине в 1,4 миллиарда световых лет, «стена» когда-то считалась самым большим объектом во Вселенной.

Сама Великая стена Слоуна не так изучена, как сверхскполения, которые находится внутри нее. Некоторые из этих сверхскоплений интересны сами по себе и заслуживают отдельного упоминания. Одно, например, имеет ядро из галактик, которые вместе со стороны выглядят как гигантские усики. Другое сверхскопление имеет очень высокий уровень взаимодействия галактик, многие из которых сейчас проходят период слияния.

Наличие «стены» и любых других более крупных объектов создает новые вопросы о загадках Вселенной. Их существование противоречит космологическому принципу, который теоретически ограничивает то, насколько большими могут быть объекты во Вселенной. Согласно этому принципу, законы Вселенной не позволяют существовать объектам размером более 1,2 миллиарда световых лет. Однако объекты подобные Великой стене Слоуна полностью противоречат этому мнению.

Как и где правильно встать на учет в военный комиссариат?

VV Цефея

Красный гипергигант, претендующий на звание самой большой звезды во Вселенной. Увы, это не так, но очень близко. По размеру она на третьем месте.

VV Цефея – затменно-переменная звезда, то есть двойная, и гигант в этой системе – компонент А, о нём и пойдет речь. Второй компонент – ничем особым не примечательная голубая звезда, в 8 раз больше Солнца. А вот красный гипергигант – еще и пульсирующая звезда, с периодом 150 суток. Её размеры могут меняться от 1050 до 1900 диаметров Солнца, и на максимуме она светит в 575 000 раз ярче нашего светила!

Сравнение размеров Солнца и различных более крупных звезд с VV Цефея. Эта звезда находится от нас в 5000 световых лет, и при этом на небе имеет яркость в 5.18 m, то есть при чистом небе и хорошем зрении её можно найти, а уж в бинокль вообще запросто.

Самый большой астероид в Солнечной системе

Такой астероид может натворить много дел.

Ранее самым большим астероидом Солнечной системы являлась Церера. Диаметр объекта составляет около 950 километров. Вторым по размеру считалась Паллада с диаметром 512 километров. А Веста занимала третью строчку самых больших из известных астероидов Солнечной системы, уступая по размерам Палладе, но обгоняя ее по массе.

После того, как ученые перевели Цереру в разряд карликовых планет, Паллада стала занимать верхнюю строчку самых больших (по размерам) астероидов в Солнечной системе. Однако астрономы уточнили размеры Весты и оказалось, что она больше Паллады. Диаметр Весты составляет 530 километров. Таким образом, Веста стала не только самым большим, но и самым массивным астероидом нашей Солнечной системы.

Самый большой астероид в Солнечной системе

Ранее самым большим астероидом Солнечной системы являлась Церера. Диаметр объекта составляет около 950 километров. Вторым по размеру считалась Паллада с диаметром 512 километров. А Веста занимала третью строчку самых больших из известных астероидов Солнечной системы, уступая по размерам Палладе, но обгоняя ее по массе.

После того, как ученые перевели Цереру в разряд карликовых планет, Паллада стала занимать верхнюю строчку самых больших (по размерам) астероидов в Солнечной системе. Однако астрономы уточнили размеры Весты и оказалось, что она больше Паллады. Диаметр Весты составляет 530 километров. Таким образом, Веста стала не только самым большим, но и самым массивным астероидом нашей Солнечной системы.

Самый большой спутник планеты в Солнечной системе

Сравнительные размеры Ганимеда с другими спутниками Солнечной системы и Землей

Спутник газового гиганта Юпитера Ганимед является самым большим спутником в Солнечной системе. Его диаметр составляет 5268 километров.

Ганимед является одним из четырех самых крупных спутников Юпитера, которые наряду с Ио, Европа и Каллисто первым открыл итальянский математик, философов и астроном Галилео Галилей. Имя Ганимед вплоть до середины 20-го века не использовалось. Галилей называл открытые им спутники «планетами Медичи», а сам Ганимед — Юпитер III или «третий спутник Юпитера».

Ученые считают, что под поверхностью Ганимеда есть огромный океан, воды в котором содержится гораздо больше, чем на Земле.

Бесплатные способы связи с авиакомпанией Победа

Кастет запрещен или нет в россии? Что будет за кастет в россии

Самый большой блоб: пузырь Лиман-Альфа 1 («Зеленая медуза»)

Начало 2000 годов богато открытиями новых объектов в доступной изучению Вселенной. Японскими учеными был выявлен необычный объект гигантских размеров, представляющий особенно плотное скопление пылегазовых образований и галактик. На языке астрономов такой объект называют «блоб» или «пузырь».

Использование специальной аппаратуры позволило ученым увидеть формирование зеленого оттенка в виде медузы (или кляксы), имеющей 3 основных отростка, расположение галактик в которых, превосходит среднюю плотность во Вселенной в 4 раза. Эта концентрация галактических и газовых образований получила официальное наименование «пузыря Лиман Альфа 1».

«Спектр-УФ» с ультрафиолетовым спектром работы для поиска жизни

Третий аппарат серии, обсерватория «Спектр-УФ», предназначен для точечного слежения с помощью УФ-телескопа Т-170М за конкретными объектами в ультрафиолетовом диапазоне и задуман ещё в 1990 году.

За это время несколько раз поменялся и сам проект, и его участники: сегодня предполагается существенный вклад не только России, но и Великобритании, Испании, Мексики и Японии.

Его основа, уникальное 170-сантиметровое зеркало, уже готово и ждет своего часа. Бортовое оборудование (в числе которого необходимые для функционирования спектрографы) стран-партнеров будет поставлено к 2022 году.

Основная задача аппарата – подробные исследования ключевых объектов космоса: ядер галактик, экзопланет.

Ультрафиолетовый обзор позволит оценивать спектр объектов и получать данные о изотопном составе, что позволит уточнить модели космоса, узнать состав атмосфер планет и, возможно, найти следы жизни.

Дополнительная задача аппарата – поиск скрытого диффузного барионного вещества, межгалактических облаков из горячих пыли и газа, которые практически невидимы для существующих телескопов.

Первоначальный запуск орбитальной составляющей комплекса в связи с последовательными сокращениями бюджета с 1997 года плавно перетек на 2021, а следом, из-за санкций 2014 года – на 2025-2026 год.

На данный момент ожидается, что телескоп будет запущен в конце 2025 года на тяжелой «Ангаре» с космодрома Восточный и отправится на геостационарную орбиту.

Жизненный цикл звезд Вселенной

Звезда во Вселенной начинает свою жизнь в виде облака пыли и газа, называемого туманностью. Гравитация соседней или взрывная волна сверхновой звезды могут заставить туманность сжиматься. Элементы газового облака объединяются в плотную область, называемую протозвездой. В результате последующего сжатия протозвезда нагревается. В итоге, она достигает критической массы, и начинается ядерный процесс; постепенно звезда проходит все фазы своего существование. Первый (ядерный) этап жизни звезды – самый долгий и стабильный.

Продолжительность жизни звезды зависит от её размера. Крупные звёзды расходуют своё жизненное топливо быстрее. Их жизненный цикл может длиться не более нескольких сотен тысяч лет. А вот маленькие звёзды живут многие миллиарды лет, так как тратят свою энергию медленнее.

Но, как бы то ни было, рано или поздно, звёздное топливо кончается, и тогда маленькая звезда превращается в красного гиганта, а крупная звезда – в красного супергиганта. Эта фаза продлиться до тех пор, пока топливо не израсходуется окончательно. В этот критический момент внутреннее давление ядерной реакции ослабнет и больше не сможет уравновешивать силу гравитации, и, в результате, произойдет коллапс звезды. Затем небольшие звёзды Вселенной, как правило, перевоплощаются в планетарную туманность с ярким сияющим ядром, называемым белым карликом. Со временем и он остывает, превращаясь в тёмный сгусток материи – чёрного карлика.

У больших звезд всё происходит немного иначе. Во время коллапса они высвобождают невероятное количество энергии, и мощный взрыв рождает сверхновую звезду. Если её величина составляет  1.4 величины Солнца, тогда, к сожалению, ядро не сможет поддерживать своё существование и, после очередного коллапса, сверхновая звезда станет нейтронной. Внутренняя материя звезды сожмётся до такой степени, что атомы образуют плотную оболочку, состоящую из нейтронов. Если же звёздная величина в три раза больше солнечной, то коллапс её просто уничтожит, сотрёт с лица Вселенной.

Туманность, оставшаяся после звезды Вселенной, может расширяться в течение миллионов лет. В конце концов, на неё подействует гравитация соседней или взрывная волна сверхновой звезды и всё повторится снова. Этот процесс будет происходить по всей Вселенной – бесконечный цикл жизни, смерти и возрождения.

Результатом этой звёздной эволюции является образование тяжёлых элементов, необходимых для жизни. Наша солнечная система произошла из второго или третьего поколения туманности, и благодаря этому на Земле и других планетах есть тяжёлые элементы. А это значит, что в каждом из нас есть частички звёзд.

Историческая справка

То, как образуются планетарные тела, многие из нас проходили в школе. Весь этот занимательный процесс начинается с возникновения облака, состоящего из пыли и газа. Затем свою роль играет гравитация, за счёт которой происходит сжатие, а также разогрев газа в центральной части будущей системы. Во время столкновения ядер атомов и их объединения в более сложные структуры возникает термоядерная реакция. Это приводит к зарождению звезды и рождению новых планет.

Но многие люди по-прежнему задаются вопросом: «насколько крупные размеры могут иметь планетарные тела, и какая самая большая планета в рамках всего космического пространства. Действительно, это очень интересный вопрос, который с течением времени назревает у каждого взрослого человека.

Если вести речь о звёздах, с ними всё более-менее понятно: чем больший размер имеет светило, тем больше трудностей возникает в процессе сдерживания внешних слоёв, тем меньшую продолжительность жизни оно имеет. Что касается планет, здесь дать ответ более сложно, т. к. есть множество различных нюансов.

Изучая вопрос, какая самая большая планета, можно отметить, что чем больший размер имеет протопланетный диск, тем большее число планет может присутствовать. Или это может быть один объект внушительного размера. И самое интересное заключается в том, что такой диск ограничен в размерах, поскольку звезда не в состоянии захватить всё космическое вещество, но может сделать это исключительно с его малой частью.

Супервойд

Совсем недавно ученые обнаружили самое большое холодное пятно во
Вселенной (по крайней мере известной науке Вселенной). Оно расположено в
южной части созвездия Эридан. Своей протяженностью в 1,8 миллиарда
световых лет это пятно ставит ученых в тупик, потому что они даже
предположить не могли, что такой объект может действительно
существовать.

Несмотря на наличие слова «войд» в названии (с английского «void»
означает «пустота») пространство здесь не совсем пустое. В этом регионе
космоса расположено примерно на 30 процентов меньше скопления галактик,
чем в окружающем их пространстве. По мнению ученых, войды составляют до
50 процентов объема Вселенной, и этот процент, по их же мнению, будет
продолжать расти благодаря сверхсильной гравитации, которая притягивает к
себе всю окружающую их материю. Интересным этот войд делают две вещи:
его невообразимый размер и его отношение к загадочному холодному
реликтовому пятну WMAP.

Что интересно, новый обнаруженный супервойд сейчас воспринимается
учеными как лучшее объяснение такого явления, как холодные пятна, или
регионы космического пространства, заполненные космическим реликтовым
(фоновым) микроволновым излучением. Ученые долгое время спорят, чем же
на самом деле являются эти холодные пятна.

Одна из предложенных теорий, например, предполагает, что холодные
пятна являются отпечатками черных дыр параллельных вселенных, вызываемых
квантовой запутанностью между вселенными.

Однако многие ученые современности больше склоняются к мнению о том,
что появление этих холодных пятен может провоцироваться супервойдами.
Объясняется это тем, что когда протоны проходят через войд, они теряют
свою энергию и слабеют.

Тем не менее есть вероятность, что расположение супервойдов
относительно близко к расположению холодных пятен может являться простой
случайностью. Ученым предстоит провести еще немало исследований на этот
счет и в конце концов выяснить, являются ли войды причиной
возникновения загадочных холодных пятен или их источником является нечто
иное.

Космическая паутина

Ученые считают, что расширение Вселенной происходит не случайным образом. Есть теории, согласно которым все галактики космоса организованы в одну невероятных размеров структуру, напоминающую нитевидные соединения, объединяющие между собой плотные области. Эти нити рассеяны между менее плотными войдами. Эту структуру ученые называют Космической паутиной.

По мнению ученых, паутина сформировалась на очень ранних этапах истории Вселенной. Ранний этап формирования паутины происходил нестабильно и неоднородно, что впоследствии помогло образованию всего того, что сейчас имеется во Вселенной. Считается, что «нити» этой паутины сыграли большую роль в эволюции Вселенной, благодаря которым эта эволюция ускорилась. Галактики, находящиеся внутри этих нитей, имеют существенно более высокий показатель звездообразования. Кроме того, эти нити являются своего рода мостиком для гравитационного взаимодействия между галактиками. После своего формирования в этих нитях, галактики направляются к галактическим скоплениям, где в итоге со временем умирают.

Только недавно ученые начали понимать, чем же на самом деле является эта Космическая паутина. Более того, они даже обнаружили ее присутствие в излучении исследуемого ими далекого квазара. Квазары, как известно, являются самыми яркими объектами Вселенной. Свет одного из них направился прямиком к одной из нитей, что разогрело находящиеся в ней газы и заставило их светиться. На основе этих наблюдений ученые провели нити между другими галактиками, составив тем самым картинку «скелета космоса».

6.

Великая стена СлоунаГлядя на вселенную в целом, мы видим, что многие галактики (каждая из которых, как правило, содержит миллиарды звезд) имеют тенденцию слипаться, образуя скопления галактик. Эти скопления, в свою очередь, разделены потрясающе большими пустотами. Одно из самых массивных называется Великой стеной Слоуна. Эта структура имеет длину более 1,38 миллиарда световых лет и расположена примерно на расстоянии одного миллиарда световых лет от Земли. Длина особенно впечатляет, поскольку она составляет почти 1/60 (или около 5%) диаметра наблюдаемой вселенной (той части, которую действительно можно изучить; на самом деле она намного больше).

Еще более интересным является тот факт, что этот регион противоречит самой основе современной космологии, которая опирается на возраст вселенной всего 13,7 миллиардов лет. Многие известные физики считают, что для создания такой огромной структуры должно было потребоваться от 100 до 150 миллиардов лет.

Крупные объекты в Солнечной системе

Солнечная система просто ничтожна по сравнению с масштабом Великой стены Геркулес-Северная Корона.

Но все же приведем список некоторых из самых крупных объектов в нашей Солнечной системе:

— самая большая планета — Юпитер. Его диаметр составляет примерно 142 984 км. Это примерно в 11 раз больше диаметра Земли;

— самый большой спутник — Ганимед. Он вращается вокруг Юпитера, и имеет диаметр примерно 5268 км. И он даже немного крупнее, чем Меркурий;

— самый высокий вулкан — Олимп. Он находится на Марсе, и имеет высоту 25 км. Это в три раза больше высоты  горы Эверест на Земле;

— самый большой каньон: долина Маринер на Марсе. Она имеет длину более 3000 км, ширину 600 км и глубину 8 км;

— самый большой кратер: равнина Утопия на Марсе. Ее диаметр оценивается в 3300 км. Является местом посадки космического аппарата «Викинг-2», который высадился там в 1976 году;

— самый большой астероид — Веста. Его длина около 530 км. Находится в поясе астероидов между Марсом и Юпитером;

— самая большая карликовая планета — Плутон. Ее диаметр составляет 2370 км. Когда-то считалось, что Плутон меньше, чем карликовая планета Эрида. Но измерения, которые были произведены в ходе миссии «Новые горизонты» в 2015 году показали, что это не так.

Звание «Самая большая звезда»

Как уже отмечалось, в этом вопросе сложно говорить лишь про одного фаворита. Поскольку известны и другие звёздные объекты, которые имеют огромный размер. По меньшей мере, можно выделить десятку светил наибольшей величины.В такой список входят красные сверхгиганты или гипергиганты, размер которых больше солнечного примерно в 2000 раз. Однако, в основном, это нестабильные и не долго живущие представители нашей Галактики.

Список крупнейших

На втором месте, стоит звезда VY Большого Пса, которая имеет внушительные габариты. Так, радиус этого красного гипергиганта больше Земли в 1800 раз. Попробуйте представить, что её масса составляет 25 солнечных масс, а по яркости она превосходит наше Солнце аж в 270 тысяч раз! Тут, бесспорно, поражает просто разница в цифрах.Третье место занимает звезда WOH G64 из созвездия Золотой Рыбы (Большое Магелланово Облако).Помимо этого, в списке значатся такие объекты, как VV Цефея А, KY Лебедя, Вэстерланд 1-26, VX Стрельца, AH Скорпиона, HR 5171 A и другие.

Суперблоб

В 2006 году титул самого большого объекта во Вселенной получил
обнаруженный загадочный космический «пузырь» (или блоб, как их обычно
называют ученые). Правда, титул этот он сохранил ненадолго. Этот пузырь
протяженностью 200 миллионов световых лет представляет собой гигантское
скоплением газа, пыли и галактик. С некоторыми оговорками этот объект
похож на гигантскую зеленую медузу. Объект обнаружили японские
астрономы, когда изучали один из регионов космоса, известного наличием
огромного объема космического газа. Найти блоб удалось благодаря
использованию специального телескопного фильтра, который неожиданно
указал на наличие этого пузыря.

Каждая из трех «щупалец» этого пузыря содержит галактики, которые
располагаются между собой в четыре раза плотнее между собой, чем обычно
во Вселенной. Скопление галактик и газовых шаров внутри этого пузыря
носят название пузыри Лиман-Альфа. Считается, что эти объекты
образовались примерно через 2 миллиарда лет после Большого взрыва и
являются настоящими реликтами древней Вселенной. Ученые предполагают,
что сам блоб образовался, когда массивные звезды, существовавшие еще в
ранние времена космоса, вдруг стали сверхновыми и высвободили гигантский
объем газа. Объект настолько массивен, что ученые верят, что он в общем
и целом является одним из первых образовавшихся космических объектов во
Вселенной. Согласно теориям, со временем из скопившегося здесь газа
будут образовываться все больше и больше новых галактик.

Самые массивные звезды в мире

Вы наверное заметили, что звезды огромных размеров могут иметь массу, на порядок превышающие солнечную. Но, тем не менее это не самые массивные звезды. Бывают и более тяжелые светящиеся объекты, размеры которых значительно уступают размерам описанных выше гигантов.

Сейчас вы увидите список самых массивных звезд, известных человеку. Их массу мы будем писать в солнечных массах, но надо понимать, что звёзды — это очень далёкие объекты с разными особенностями. Ученые не всегда могут точно определить их массу, потому как это делается на основе многих факторов, таких как орбита, яркость, удаленность и т.п.

1

R136a1

Возраст этой звезды Вольфа — Райе оценивается в 1,7 млн лет. И она тоже в компактном звездном скоплении R136.

Природа всех сверхмассивных звезд до конца неясна. Рождаются ли они такими или образуются путём поглощения других объектов пока остаётся загадкой. Кроме того, интересна эволюция этих звезд. Обычно они после себя образуют нейтронные звезды или черные дыры.

2

Эта Киля А

Вернемся к звезде, с которой мы начинали эту статью. Эта одна из системы двух звезд Эта Киля. Её масса равна от 150 до 250 солнечных, поэтому сегодня она на почетном третьем месте нашего рейтинга.

3

R136a2

Эта молодая звезда Вольфа — Райе, возраст которой всего 300 тысяч лет, находится в удивительном скоплении звезд R136 в галактике Большое Магелланово облако. Это скопление подарило Вселенной множество крупнейших звезд, три из которых вошли в наш ТОП-7 всех известных массивных звезд.

Вращается она со скоростью 200 км в секунду, что вероятнее всего делает её приплюснутой с полюсов и вытянутой в области экватора.

Солнечный ветер активно сдувает вещество с R136a2. Предполагается, что на момент рождения масса звезды была равна около 250 солнечных.

4

R136c

Звезда Вольфа — Райе возрастом 1,7 млн лет, которая также находится в скоплении R136.

В настоящее время R136c активно изучается астрономами. Есть некоторые предпосылки того, что звезда является двойной. Её светимость почти в 6 миллионов раз выше солнечной.

5

HD 269810

Как и несколько других звезд этого списка, эта звезда ярко сияет в соседней галактике под названием Большое Магелланово Облако. Недавно научный мир разжаловал этот космический объект, пересчитав его массу. Раньше считалось, что она в 150 раз превосходит наше родное светило по своей массе. Теперь же эта цифра равна 130, что всё равно делает её одной из самых массивных среди всех известных звёзд.

По разным данным, светимость HD 269810 превосходит солнечную от 2,2 до 6,3 млн раз.

6

VFTS 682

Эта звезда интересного класса астрономических объектов под названием Вольфа — Райе. Находится она на удалении в 164 тыс. св. лет от Земли в Большом Магеллановом Облаке.

Яркость VFTS 682 превышает солнечную чуть более чем в 3 млн раз, а масса в 150 раз.

Интересный факт: температура на поверхности VFTS 682 около 55 тысяч градусов по Кельвину. Для сравнения наше родное светило имеет температуру около 5 800ºК.

Еще одним интересным моментом является то, что звезда путешествует в одиночку. Она удаляется от туманности Тарантул и сейчас их разделяют 100 световых лет. Вероятно в результате какого-то мощного гравитационного взаимодействия звезду выбросило из туманности, где она зародилась.

Возраст звезды оценивают в 1–1,4 млн лет. По звездным меркам — это мгновение, но с другой стороны живут такие звезды немного, всего несколько миллионов лет. Сейчас сложно сказать что случится с VFTS 682 через 1–2 млн лет, возможно она вспыхнет сверхновой, а может и коллапсирует в черную дыру.

7

WR 102ka

Эта молодая звезда ещё одна, относящаяся к классу звезд Вольфа — Райе. Удалена от нас на 26 тыс. световых лет. Её возраст всего около 3 млн лет — совсем немного по космическим меркам. Можно сказать, что звезда является ровесником человечества. Но в столь юном возрасте, она уже излучает свет, который в 3,2 млн раз ярче нашего Солнца. Таким образом это не только одна из самых массивных звёзд, но также и одна из самых ярких.

Самый большой газовый гигант вне Солнечной системы

Определить самую большую экзопланету класса газовый гигнат – задача не из простых. Ученым необходимо учесть множество вещей. Например, в космосе существуют объекты настолько огромные, что их сложно назвать планетами. Они скорее похожу на звезду. В то же время их масса меньше минимально необходимой для поддержания ядерных реакций горения водорода и превращения в звезду. Такие объекты принято называть субзвездными.

Предположительно самой большой экзопланетой класса газовый гигант среди обнаруженных на данный момент является HD 100546 b, открытая в 2013 году. Она находится в 337 световых годах от Земли. Ученые считают, что HD 100546 b в 6,9 раз крупнее и в 20 раз тяжелее Юпитера.

Другие миры

Однако это еще не все поражающее воображения сведения, которыми характеризуется Вселенная. Размеры космического пространства, по-видимому, значительно превосходят Метагалактику и наблюдаемую часть. Теория инфляции вводит такое понятие, как Мультивселенная. Она состоит из множества миров, вероятно, образовавшихся одновременно, не пересекающихся друг с другом и развивающихся независимо. Современный уровень развития техники не дает надежды на познание подобных соседних Вселенных. Одна из причин — все та же конечность скорости света.

Быстрое развитие науки о космосе меняет наше представление о том, каких размеров Вселенная. Современное состояние астрономии, составляющие ее теории и выкладки ученых трудны для понимания непосвященного человека. Однако даже поверхностное изучение вопроса показывает, насколько огромен мир, частью которого мы являемся, и как мало о нем мы еще знаем.

Гипергиганты

Гипергигант VY Большого Пса выбрасывает огромное количество газа во время своей вспышкиЕсли наибольшую звезду невозможно найти практически, может, стоит её разработать теоретически? Т.е., найти некий предел, после которого существование звезды уже не может быть звездой. Однако даже здесь современная наука сталкивается с проблемой. Современная теоретическая модель эволюции и физики звёзд не объясняют многого из того, что существует фактически и наблюдается в телескопы. Примером тому служат гипергиганты.

Астрономам не раз приходилось поднимать планку предела звёздной массы. Такой предел впервые ввёл в 1924 году английский астрофизик Артур Эддингтон. Получив кубическую зависимость светимости звёзд от их массы.

Эддингтон понял, что звезда не может накапливать массу бесконечно. Яркость возрастает быстрее массы, и это рано или поздно приведёт к нарушению гидростатического равновесия. Световое давление нарастающей яркости будет буквально сдувать внешние слои звезды.

Предел, рассчитанный Эддингтоном, составлял 65 солнечных масс. В последствие астрофизики уточняли его расчёты, добавляя в них неучтённые компоненты и применяя мощные компьютеры. Так современный теоретический предел массы звезд составляет 150 солнечных масс.

В представлении художника R136a1 является самой массивной из известных ныне звёзд. Кроме неё значительными массами обладает ещё несколько звёзд, число которых в нашей галактике можно пересчитать по пальцам. Такие звёзды назвали гипергигантами. Заметим, что R136a1 значительно меньше звёзд, которые, казалось бы, должны быть ниже её по классу – к примеру, сверхгиганта UY Щита. Всё потому что гипергигантами называет не самые крупные, а именно самые массивные звёзды. Для таких звёзд создали отдельный класс на диаграмме спектр-светимости (O), расположенных выше класса сверхгигантов (Ia). Точной начальной планки массы гипергиганта не установлено, но, как правило, их масса превышает 100 солнечных. Ни одна из крупнейших звёзд «большой десятки» не дотягивает до этих пределов.

Видео: Самые большие звезды во Вселенной

https://youtube.com/watch?v=_LKEF2PiIcE

http://o-kosmose.net/zvezdyi-vselennoi/

https://basetop.ru/samaya-bolshaya-zvezda-vo-vselennoy-ndash-uy-shhita/

http://pooha.net/nature/space/4-stars

http://spacegid.com/samaya-bolshaya-zvezda-vo-vselennoy.html

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector