Рдс-6с
Содержание:
- Десант обрастает броней. Чем будут воевать ВДВ России в будущем
- Водородная бомба
- Термоядерные реакции.
- Известные персоны, связанные с городом
- Российские ВДВ получат 144 единицы БМД-4М и бронетранспортеров «Ракушка»
- Значение
- Конструкция
- Ударная волна и тепловой эффект.
- Особенности и технические характеристики
- Ссылки
- Литература и источники
- История пехоты
- Патроны
- Персонально ответственны
- Примечания
- ВДВ РФ в 2018 году сформируют три танковых батальона в двух дивизиях и одной бригаде
- Принцип действия водородной бомбы
- Варианты
- Страницы
- Как легально не пойти в армию
- Принципы организации работ
- Разработка
- Испытание
- Операция Плющ
Десант обрастает броней. Чем будут воевать ВДВ России в будущем
Водородная бомба
Как было сказано ранее, принцип действия водородной бомбы основан на реакции синтеза. Термоядерный синтез — это процесс слияния двух ядер в одно, с образованием третьего элемента, выделением четвертого и энергии. Силы, отталкивающие ядра, колоссальны, поэтому для того, чтобы атомы сблизилась достаточно близко для слияния, температура должна быть просто огромной. Ученые уже который век ломают голову над холодным термоядерным синтезом, так сказать пытаются сбросить температуру синтеза до комнатной, в идеале. В этом случае человечеству откроется доступ к энергии будущего. Что же до термоядерной реакции в настоящее время, то для ее запуска по-прежнему нужно зажигать миниатюрное солнце здесь на Земле — обычно в бомбах используют урановый или плутониевый заряд для старта синтеза.
Водородная бомба
Термоядерные реакции.
В недрах Солнца содержится гигантское количество водорода, находящегося в состоянии сверхвысокого сжатия при температуре ок. 15 000 000 К. При столь высоких температуре и плотности плазмы ядра водорода испытывают постоянные столкновения друг с другом, часть из которых завершается их слиянием и в конечном счете образованием более тяжелых ядер гелия. Подобные реакции, носящие название термоядерного синтеза, сопровождаются выделением огромного количества энергии. Согласно законам физики, энерговыделение при термоядерном синтезе обусловлено тем, что при образовании более тяжелого ядра часть массы вошедших в его состав легких ядер превращается в колоссальное количество энергии. Именно поэтому Солнце, обладая гигантской массой, в процессе термоядерного синтеза ежедневно теряет ок. 100 млрд. т вещества и выделяет энергию, благодаря которой стала возможной жизнь на Земле.
Известные персоны, связанные с городом
Российские ВДВ получат 144 единицы БМД-4М и бронетранспортеров «Ракушка»
Значение
Испытание РДС-6с показало, что СССР впервые в мире создал компактное (бомба помещалась в бомбардировщик Ту-16) термоядерное изделие огромной разрушительной мощности. К тому времени США «имели в наличии» испытание термоядерного устройства размером с трёхэтажный дом. Советский Союз заявил, что тоже обладает термоядерным оружием, но в отличие от Соединённых Штатов, их бомба полностью готова и может быть доставлена стратегическим бомбардировщиком на территорию противника. Американские эксперты оспаривали это заявление, основываясь на том, что советская бомба не являлась «правильной», так как сконструирована не по схеме радиационной имплозии (схема «Теллера-Улама»). Однако до 1954 года в арсенале у США не имелось транспортабельных термоядерных бомб.
После успешного испытания многие конструкторы, исследователи и производственники были награждены орденами и медалями. Главный идеолог первой водородной бомбы, А. Д. Сахаров, сразу стал академиком АН СССР. Ему было присвоено звание Героя Социалистического Труда и лауреата Сталинской премии. Звание Героя Социалистического Труда во второй раз было присвоено Ю. Б. Харитону, К. И. Щёлкину, Я. Б. Зельдовичу и Н. Л. Духову. Звание Героя Социалистического Труда также было присвоено М. В. Келдышу, который осуществлял математическое обеспечение работ по созданию водородной бомбы.
Схема «Слойка» однако не имела перспектив масштабирования мощности взрыва свыше мегатонны. Испытания Иви Майк в США в ноябре 1952 года доказали, что мощность водородного взрыва, произведённого по определённой схеме, может превысить несколько мегатонн. 1 марта 1954 года во время испытаний Кастл Браво США произвели взрыв бомбы, собранной по двухступенчатой схеме Теллера-Улама, и получили мощность взрыва в 15 мегатонн. СССР удалось разгадать секрет схемы к 1954 году и провести испытания мегатонной бомбы РДС-37, созданной по схеме Теллера-Улама, 22 ноября 1955 года на Семипалатинском испытательном полигоне. Как и в РДС-6с в качестве термоядерного горючего использовался .
Конструкция
РДС-6с — одноступенчатая «форсированная» ядерная бомба имплозивного типа. Мощность 400 кт; КПД — 15-20 %. В общем энерговыделении на долю синтеза пришлось 15-20%.
В дальнейшем бомба была модернизирована, в её заряде вместо трития был использован стабильный , мощность взрыва РДС-27 составила 250 кт (6 ноября 1955 года).
Питта герметичная, сферически симметричная, в центре небольшой заряд деления (предположительно выполненной по схеме «лебедь» или по схеме с каскадированием), непосредственно к нему примыкают полушария оружейного урана, далее плитки литого дейтерида-тритида лития-6, далее природный уран. Точные массогабаритные данные и состав материалов питты будут секретны всё время действия договоров о нераспространении ядерного оружия, то есть, предположительно, всегда.
Ударная волна и тепловой эффект.
Прямое (первичное) воздействие взрыва супербомбы носит тройственный характер. Наиболее очевидное из прямых воздействий – это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва. Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха – туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги.
Согласно расчетам, при взрыве в атмосфере 20-мегатонной бомбы люди останутся живы в 50% случаев, если они 1) укрываются в подземном железобетонном убежище на расстоянии примерно 8 км от эпицентра взрыва (ЭВ), 2) находятся в обычных городских постройках на расстоянии ок. 15 км от ЭВ, 3) оказались на открытом месте на расстоянии ок. 20 км от ЭВ. В условиях плохой видимости и на расстоянии не менее 25 км, если атмосфера чистая, для людей, находящихся на открытой местности, вероятность уцелеть быстро возрастает с удалением от эпицентра; на расстоянии 32 км ее расчетная величина составляет более 90%. Площадь, на которой возникающее во время взрыва проникающее излучение вызывает летальный исход, сравнительно невелика даже в случае супербомбы высокой мощности.
Особенности и технические характеристики
Наименование | Число |
Экипаж (чел.) | 3 |
Размеры | |
Длина (м) | 59,5 |
Размах крыльев (м) | 48 |
Высота (м) | 15,8 |
Площадь крыла (кв.м) | 320 |
Вес | |
Макс. взлетный вес (кг) | 208 000 |
Макс. посадочный вес (кг) | 175 000 |
Вес пустого (кг) | 116 250 |
Макс. вес без топлива (кг) | 158 400 |
Макс. Коммерческая загрузка (кг) | 42 000 |
Емкость топливных баков (л) | 114 000 |
Летные данные | |
Дальность полета с макс. Загрузкой (км) | 3 600 |
Макс. Крейсерская скорость (км/ч) | 870 |
Длина разбега (м) | 2 800 |
Длина пробега (м) | 2 300 |
Двигатели | НК-86, 4*13 000 кгс |
Удельный расход топлива (г/пасс.км) | 34,5 |
Часовой расход топлива (кг) | 9 900 |
Пассажирский салон | |
Кол-во кресел (эконом) | 350 |
Кол-во кресел (эконом/бизнес) | 234 |
Ширина салона (м) | 5,7 |
Ссылки
Литература и источники
История пехоты
Уже во времена античности на арену древних сражений вышла конница. Однако в Древней Греции появляются гоплиты и на несколько веков делают пехоту самым боеспособным и важным родом войск. Теперь пехотинец — это маленькая подвижная крепость с копьем. Их линейный строй, доспехи, вооружение позволяют им с успехом противостоять вражеской коннице и уничтожать пехоту противника.
Рим за время своего существования внес значительные изменения в понятия войны, тактики, вооружения. Пехота стала делиться на тяжелую с массивным доспехом, щитами, копьями, мечами и дротиками и легкую, вооруженную в основном луками, дротиками и пращами. Доспехи у легкой пехоты могли отсутствовать.
В раннем Средневековье выделяется воинское сословие, которое может обеспечить себе хорошего коня, прочный доспех, оружие, оруженосца. Все это стоило целое состояние. Доспех надевался и на коня, превращая всадника в средневековый танк. Такая тяжелая конница с легкостью достигала вражеской пехоты, не получая особого урона от луков, и уничтожала ее
Пехота стала вспомогательной частью армии, чтобы поддержать своих, отвлечь внимание противника. В эти времена пехотинец – это обслуживающий персонал для конницы
Ее стали набирать из ополчения, которое не могло обзавестись хорошей экипировкой. Так обстояли дела в Европе и на Ближнем Востоке. В Азии и других степных регионах совсем отказались от пехоты, так как приходилось преодолевать большие расстояния, где не было естественных укрытий.
Одни люди придумали крепости, а другие — артиллерию, и вновь баланс сил изменился. Ручная артиллерия стала предвестником стрелкового оружия. Начало увеличиваться количество стрелков, а с появлением огнестрельного оружия их число стало преобладающим. Появились ружья со штуками, а потом и винтовки, в итоге боевая пехота стала стрелковыми войсками.
В полевом уставе рабоче-крестьянской Красной армии 1939 г. пехотинец – это представитель главного рода войск, который выносит на себе основные тяготы войны. Артиллерия, танки и авиация должны во всем ей помогать. На сегодняшний день во многих странах выводятся доктрины о главенстве ракетных войск, но такие преобразования еще не завершены.
Патроны
Персонально ответственны
Решение государственных задач по созданию ядерно-водородного оружия в значительной мере стало возможно благодаря срочным мерам советского правительства по организации эффективной структуры централизованного управления Атомным проектом. 20 августа 1945 года были созданы Спецкомитет (СК, во главе с Лаврентием Берией) при Государственном Комитете Обороны и Первое главное управление (ПГУ, руководитель – бывший нарком боеприпасов Борис Ванников) при СНК СССР. В результате удалось реализовать следующий цикл управления Атомным проектом: производственные предприятия, институты, конструкторские организации – Научно-технический совет (НТС) ПГУ – ПГУ – Спецкомитет – Совет министров СССР. Работы по созданию ВБ РДС-6С постоянно контролировались Спецкомитетом и ПГУ. После информационного письма Ванникова и Курчатова о принципиальной возможности создания сверхбомбы Спецкомитет и ПГУ неоднократно рассматривали состояние разработок ВБ и при необходимости готовили постановления и распоряжения Совета министров. За 1950–1953 годы вышло 26 постановлений и распоряжений СМ СССР по научным, производственным и организационным вопросам разработки ВБ РДС-6С. Такого большого числа правительственных решений по другим направлениям Атомного проекта не выпускалось. Большинство из них относится к работам КБ-11 как основной организации-исполнителя, где со временем сложился порядок работ, определенный постановлениями СМ СССР и приказами руководства КБ-11. 8 февраля 1949 года начальник КБ-11 Павел Зернов подписал приказ о работах в КБ-11 по РДС-6, в пункте 1 которого предусматривалась организация группы «под непосредственным руководством главного конструктора Ю. Б. Харитона для дальнейшей разработки вопросов по созданию РДС-6 в следующем составе: Ю. Б. Харитон (руководитель), К. И. Щелкин, Я. Б. Зельдович, Н. Л. Духов, В. И. Алферов, А. С. Козырев, Е. И. Забабахин, Г. Н. Флеров, Л. В. Альтшулер, В. А. Цукерман, В. А. Давиденко, Д. А. Франк-Каменецкий, А. И. Абрамов».
Через год правительство назначило научного руководителя и его заместителя, ответственных за конкретные направления работ. Статус научного руководителя, который был введен в советском Атомном проекте, был очень высок, о чем свидетельствовала, например, деятельность Игоря Курчатова. В пункте 2 постановления СМ СССР № 827-303сс/оп «О работах по созданию РДС-6» от 26 февраля 1950 года указано: «Утвердить научным руководителем работ по созданию РДС-6С и РДС-6Т члена-корреспондента АН СССР Ю. Б. Харитона, первым заместителем научного руководителя по созданию РДС-6С и РДС-6Т доктора физико-математических наук К. И. Щелкина, заместителем научного руководителя по изделиям РДС-6С члена-корреспондента АН СССР И. Е. Тамма, заместителем научного руководителя по расчетно-теоретической части РДС-6Т члена-корреспондента АН СССР Я. Б. Зельдовича, заместителями научного руководителя по исследованиям ядерных процессов кандидата физико-математических наук М. Г. Мещерякова и кандидата физико-математических наук Г. Н. Флерова».
Также постановлением утверждался персональный состав расчетчиков, в пункте 4 которого читаем следующее: «Организовать в КБ-11 для разработки теории изделия РДС-6С расчетно-теоретическую группу под руководством члена-корреспондента АН СССР И. Е. Тамма в составе: А. Д. Сахарова – кандидата физико-математических наук, С. З. Беленького – доктора физико-математических наук, Ю. А. Романова – научного сотрудника, Н. Н. Боголюбова – академика Украинской АН, И. Я. Померанчука – доктора физико-математических наук, В. Н. Климова – научного сотрудника, Д. В. Ширкова – научного сотрудника».
Примечания
ВДВ РФ в 2018 году сформируют три танковых батальона в двух дивизиях и одной бригаде
Принцип действия водородной бомбы
Водородная бомба — сложнейшее техническое устройство, взрыв которого требует последовательного протекания ряда процессов.
Сначала происходит детонация заряда-инициатора, находящегося внутри оболочки ВБ (миниатюрная атомная бомба), результатом которой становится мощный выброс нейтронов и создание высокой температуры, требуемой для начала термоядерного синтеза в основном заряде. Начинается массированная нейтронная бомбардировка вкладыша из дейтерида лития (получают соединением дейтерия с изотопом лития-6).
Под действием нейтронов происходит расщепление лития-6 на тритий и гелий. Атомный запал в этом случае становится источником материалов, необходимых для протекания термоядерного синтеза в самой сдетонировавшей бомбе.
Смесь трития и дейтерия запускает термоядерную реакцию, вследствие чего происходит стремительное повышение температуры внутри бомбы, и в процесс вовлекается всё больше и больше водорода. Принцип действия водородной бомбы подразумевает сверхбыстрое протекание данных процессов (устройство заряда и схема расположения основных элементов способствует этому), которые для наблюдателя выглядят мгновенными.
Варианты
- АКС74УН2 («ночной») — вариант, отличающийся наличием планки для крепления ночного прицела. Для стрельбы в условиях естественной освещенности ночью к нему присоединяется ночной стрелковый прицел универсальный модернизированный (НСПУМ).
- АКС74УБ («бесшумный») — вариант для сил специального назначения, отличающийся заменой штатной дульной насадки на резьбу для крепления глушителя (обычно ПБС-4) и возможностью установки бесшумного подствольного гранатомета БС-1М. В таком виде автомат образовывает бесшумный стрелково-гранатометный комплекс 6С1 «Канарейка».
В поздних версиях АКС74У на левой стороне ствольной коробки появилась боковая планка системы «ласточкин хвост» для крепления прицелов типа «Кобра» и ПСО/ПОСП.
Страницы
Как легально не пойти в армию
Принципы организации работ
Деятельность по созданию первой водородной бомбы в Советском Союзе обладала целым рядом особенностей. Прежде всего все участники этой работы, независимо от должностного положения, обладали высоким уровнем ответственности, понимая исключительное военно-политическое значение наличия сверхбомбы как одного из эффективных средств защиты страны от внешних угроз.
Разумеется, огромную роль в достижении успеха сыграли государственная централизация и координация деятельности всех предприятий и организаций, а также максимально возможное финансирование работ, включая щедрое материальное поощрение за полученные результаты. И все это при жестком контроле исполнения. Огромное значение имел и высокий потенциал довоенной советской науки, особенно ядерной физики, наличие большого числа высококвалифицированных ученых и инженеров.
Достижения ядерной физики постоянно использовались для решения актуальных задач обороны страны. Вообще без результатов фундаментальных исследований создание такого наукоемкого изделия, каким являются ВБ РДС-6С и последующие усовершенствованные образцы ВБ, было бы невозможным. Известно, что директор Ленинградского физико-технического института (ЛФТИ) академик Абрам Иоффе в предвоенные годы получил выговор за исследования по ядерной физике как не дающие практического выхода. Но именно довоенные фундаментальные изыскания позволили Советскому Союзу получить передовое оружие.
В создании первой отечественной ВБ участвовали выдающиеся ученые страны различных специальностей, среди которых следует назвать в первую очередь таких известных физиков, как Игорь Курчатов, Юлий Харитон, Яков Зельдович, Кирилл Щелкин, Игорь Тамм, Андрей Сахаров, Виталий Гинзбург, Лев Ландау, Евгений Забабахин, Юрий Романов, Георгий Флеров, Илья Франк, Александр Шальников, и других.
Принципиальной особенностью работ по РДС-6 являлось участие в них большого числа советских математиков высшей квалификации, таких как Николай Боголюбов, Иван Виноградов, Леонид Канторович, Мстислав Келдыш, Андрей Колмогоров, Иван Петровский и многие, многие другие. Весь цвет советской науки был привлечен к созданию первой отечественной ВБ. Активное участие большого числа научных, проектно-конструкторских и производственных коллективов страны с опытными кадрами позволяло решать сложнейшие наукоемкие задачи. Появление ВБ было бы невозможно без получения в промышленных масштабах лития-6, дейтерия, трития и их соединений – основных компонентов термоядерного оружия, методов выделения трития из облученного лития и т. д.
Новые идеи, проекты установок, планов НИР и ОКР, отчетов директоров институтов о выполненных работах обсуждались на семинарах и научных советах Лаборатории № 2, НТС ПГУ и НТС при КБ-11 и др. Все правительственные решения оформлялись на основании рекомендаций НТС ПГУ и НТС при КБ-11 после апробации руководством ПГУ и Спецкомитета. Практика постоянного коллегиального обсуждения новых предложений на заседаниях НТС привела к ликвидации большого разрыва между идеями и их реализацией.
Советский Атомный проект отличался широкой программой разнообразных фундаментальных исследований с сооружением опытных ядерных реакторов и установок, ускорителей заряженных частиц и т. д., результаты которых сразу же использовались при выполнении конкретных заданий. При этом на фундаментальные исследования затрачивались громадные средства.
Разработка
Начало первых работ по термоядерной программе в СССР относится ещё к 1945 году. Тогда И. В. Курчатов получил информацию об исследованиях, ведущихся в США над термоядерной проблемой. Они были начаты по инициативе Эдварда Теллера в 1942 году, по программе Alarm Clock, вместо Super- создание водородной бомбы мегатонного класса на основе дейтерида лития-6.
В 1949 году, после успешного испытания первой советской атомной бомбы, американцы форсировали программу наращивания своих стратегических ядерных сил. Разработка термоядерного оружия становилась всё более приоритетной для Советского Союза. Весной 1950 года физики-ядерщики — И. Тамм, А. Сахаров и Ю. Романов переезжают на «объект» в КБ-11, где начинают интенсивную работу над созданием водородной бомбы.
В 1948 году А. Д. Сахаровым были выдвинуты, на основе расчётов, основополагающие идеи конструкции водородной бомбы РДС-6. После этого разработка бомбы пошла по двум направлениям: «слойка» (РДС-6с), которая подразумевала атомный заряд, окружённый несколькими слоями лёгких и тяжёлых элементов, и «труба» (РДС-6т), в которой плутониевая бомба погружалась в жидкий дейтерий. США разрабатывали похожие схемы. Например, схема «Alarm clock», которая была выдвинута Эдвардом Теллером, являлась аналогом «сахаровской» слойки, но она никогда не была реализована на практике. А вот схема «Труба», над которой так долго работали учёные, оказалась тупиковой идеей.
После испытания первой советский атомной бомбы РДС-1 основные усилия сконцентрировались на варианте «Слойка». Государственная комиссия под председательством И. В. Курчатова, проведя анализ результатов генеральной репетиции и доложив свои соображения правительству, приняла решение провести испытания первой водородной бомбы 12 августа 1953 года в 7 часов 30 минут местного времени.
Испытание
Операцию по сборке заряда проводили Н. Л. Духов, Д. А. Фишман, Н. А. Терлецкий под руководством Ю. Б. Харитона и в присутствии И. В. Курчатова.
Подготовка системы автоматики осуществлялась В. И. Жучихиным и Г. А. Цырковым. В работах принимали участие А. Д. Захаренков и Е. А. Негин.
Снаряжение заряда капсюлями-детонаторами после подъёма его на башню осуществлялось А. Д. Захаренковым и Г. П. Ломинским под руководством К. И. Щёлкина и в присутствии А. П. Завенягина.
На Семипалатинском полигоне тем временем шла интенсивная подготовка опытного участка, на котором располагались различные постройки, регистрирующая аппаратура, военная техника и другие объекты. В общем было подготовлено:
- 1300 измерительных, регистрирующих и киносъёмочных приборов;
- 1700 различных индикаторов;
- 16 самолётов;
- 7 танков;
- 17 орудий и миномётов.
В общей сложности на поле имелось 190 различных сооружений. В этом испытании впервые были применены вакуумные заборники радиохимических проб, автоматически открывавшиеся под действием ударной волны. Всего к испытаниям РДС-6с было подготовлено 500 различных измерительных, регистрирующих и киносъёмочных приборов, установленных в подземных казематах и прочных наземных сооружениях. Авиационно-техническое обеспечение испытаний — измерение давления ударной волны на самолёт, находящийся в воздухе в момент взрыва изделия, забор проб воздуха из радиоактивного облака, аэрофотосъёмка района и другое — осуществлялось специальной лётной частью. Подрыв бомбы осуществлялся дистанционно, подачей сигнала с пульта, который находился в бункере.
Было решено произвести взрыв на стальной башне высотой 40 м, заряд был расположен на высоте 30 м. Радиоактивный грунт от прошлых испытаний был удалён на безопасное расстояние, специальные сооружения были отстроены на своих же местах на старых фундаментах, в 5 м от башни был сооружён бункер для установки разработанной в ИХФ АН СССР аппаратуры, регистрирующей термоядерные процессы.
Сигнал на подрыв был подан в 7:30 утра 12 августа 1953 года. Горизонт озарила ярчайшая вспышка, которая слепила глаза даже через тёмные очки. Мощность взрыва составила 400 кт, что в 20 раз превысило энерговыделение первой атомной бомбы. Советский физик Ю. Харитон, проанализировав испытание, заявил, что на долю синтеза приходится около 15-20 %, остальная энергия выделилась за счёт расщепления U-238 быстрыми нейтронами. В бомбе РДС-6с впервые было использовано , что являлось серьёзным технологическим прорывом.
По результатам испытаний в радиусе 4 км, кирпичные здания были полностью разрушены, на расстоянии 1 км, ж/д мост со 100 тонными пролётами, был отброшен на 200 м.
Уровень радиации в облаке на высоте 3000 м после 20 минут: 5,4 Р/ч, на высоте 4000-5000 м после 1 часа 04 минут: 9 Р/ч, на высоте 8000 м после 33 минут: 360 Р/ч, на высоте 10000 м после 45 минут: 144 Р/ч., длина полосы загрязнения с дозой свыше 1 Р после 30 минут составляла 400 км, ширина 40-60 км, на следующий день полоса длиной 480 км, шириной 60 км имела 0,01 Р/ч. Радиоактивное облако через 3 часа после взрыва, размерами 100 на 200 км, разделилось на 3 части, первая двигалась в направлении к озеру Байкал, здесь доза радиации не превышала 0,5 Р, средняя часть пошла в направлении Омска, максимальная доза составляла не более 0,2 Р, самая нижняя часть облака пошла по малому кругу вокруг Алтайского края в направлении Омска, Караганды и так далее. Максимальная доза в данном случае не превышала 0,01 Р.
Операция Плющ
Так назвались испытания американского термоядерного оружия на Маршалловых островах в 1952 г. во время которых была взорвана первая термоядерная бомба. Она называлась Плющ Майк и была построена по типовой схеме Теллера-Улама. Ее вторичный термоядерный заряд был помещен в цилиндрический контейнер, представляющий собой термически изолированный сосуд Дьюара с термоядерным топливом в виде жидкого дейтерия, вдоль оси которого проходила «свеча» из 239-плутония. Дьюар, в свою очередь, был покрыт слоем 238-урана весом более 5 метрических тонн, который в процессе взрыва испарялся, обеспечивая симметричное сжатие термоядерного топлива. Контейнер с первичным и вторичным зарядами был помещен в стальной корпус 80 дюймов шириной и 244 дюйма длиной со стенками в 10-12 дюймов толщиной, что было крупнейшим примером кованого изделия до того времени. Внутренняя поверхность корпуса был выстлана листами свинца и полиэтилена для отражения излучения после взрыва первичного заряда и создания плазмы, разогревающей вторичный заряд. Все устройство весило 82 тонны. Вид устройства незадолго до взрыва показан на фото ниже.
Первое испытание термоядерной бомбы состоялось 31 октября 1952 г. Мощность взрыва составила 10,4 мегатонны. Аттол Эниветок, на котором он был произведен, был полностью разрушен. Момент взрыва показан на фото ниже.