Гипотезы происхождения земли. происхождение планет

Современные представления о возникновении Солнечной системы

Предполагается, что раньше на месте нашей планетной системы существовала огромная звезда Коатликуэ, имевшая массу в 30 раз больше современной солнечной массы. Коатликуэ взорвалась и образовала огромное молекулярное облако. Примерно 4,6 млрд лет назад из него стало формироваться Солнце. Начало этого процесса вызвало явление гравитационного коллапса – быстрого сжатия вещества вследствие действия его собственной силы тяжести.

Что же вызвало подобный гравитационный коллапс? Дело в том, что произошло уплотнение вещества в одной из частей облака. Причиной этого уплотнения мог стать пролет крупного небесного тела, ударная волна от взрыва звезды или просто случайные колебания частиц облака. В любом случае возникшее уплотнение стало притягивать к себе всё больше и больше других частиц. Возник эффект, который в науке называют «положительной обратной связью»: рост массы вещества в районе уплотнения увеличивал силу его тяжести, что в свою очередь увеличивало приток нового вещества и приводило к росту массы материи в центре.

Из-за сжатия облако, имевшее небольшое начальное вращение, увеличивало свою угловую скорость. Таким образом работал закон сохранения углового момента. Одновременно с этим из-за увеличения плотности материи в центре облака температура там начинала возрастать. В какой-то момент она достигла значений в миллионы градусов, что привело к запуску термоядерной реакции. Этот момент можно считать временем рождения Солнца.

В оставшейся части облака уже возникли другие уплотнения, которые в будущем образовали протопланеты. На момент рождения Солнца их насчитывалось порядка 50-100 этих образований. Они продолжали сталкиваться друг с другом и соединяться, но иногда столкновения приводили к образованию спутников. Считается, что Луна образовалась в результате столкновения протопланеты Тея и Земли примерно 4,533 млрд лет назад. Удар прошел по касательной, а потому наша планета стала вращаться вокруг своей оси.

В начале XXI века среди ученых возобладало мнение, что планеты не сразу заняли положение на своих современных орбитах. 4,5 млрд лет назад они находились значительно ближе к Солнцу, чем сейчас. Теоретически в районе пояса астероидов могла образоваться ещё одна планета, однако этого не произошло из-за формирования Юпитера. Этот гигант обладает огромной массой, поэтому он стал выкидывать из тела из пояса астероидов. Некоторые из астероидов попали во внутреннюю Солнечную систему и бомбардировали уже сформировавшиеся там планеты.

За счет этих бомбардировок на Земле появилась вода. Дело в том, что ее молекулы слишком легкие, и поэтому они не могли появиться на нашей планете на начальной стадии ее формирования. Однако при падении на нее астероидов из отдаленных и более холодных районов Солнечной системы.

В начальный период своего возникновения Земля была сильно разогрета. Однако после прекращения эпохи бомбардировок начался процесс ее остывания. Изначально поверхность планеты была жидкой, и более легкие элементы всплывали в верхние слои, а более твердые опускались глубже. Со временем из-за остывания Земли образовалась твердая земная кора, однако под ней до сих пор находится жидкая мантия. Опустившиеся вглубь металлы образовали металлическое ядро, которое сегодня создает магнитное поле планеты. Этот процесс занял 10 миллионов лет. Атмосфера Земли образовалась в результате высокой вулканической активности. Газы вырывались из недр земли наружу, однако из-за силы тяжести планеты не могли покинуть ее.

Конное снаряжение в античности

Снаряжением, без которого было невозможно ездить на лошади, были упряжь, шпоры и седло. Всадник во время езды прочно удерживался в седле и управлял конём с помощью упряжи, а вот стремян в античности не существовало, они появились значительно позже, уже в эпоху Средневековья. Лошадиную упряжь могли украшать круглыми пластинками, аналогичными фалерам. Помимо фалер на лошади могло быть огромное количество декоративных элементов, не уступающих по сложности и красоте чеканной экипировке самих всадников. Защитные металлические пластины могли быть украшены гравировкой или чеканкой со сложными сюжетами, часто мифологическими, и быть сделаны из цветных металлов.

Зарисовка римских шпор

Римские шпоры (calcaria) были заимствованы у македонцев, которые первыми их начали использовать со времён Филиппа II. Шпоры широко использовались во всей Империи, и существует немало их археологических находок. Внешне они представляли собой полумесяц, который плотно обхватывал пятку всадника и часто имел шип длиной 1-4 см на обратной стороне. Шпоры крепились к обуви (калигам и кальцеям) с помощью кожаных ремешков. Интересно заметить, что функция шпор в Древнем Риме была противоположна современной: шпоры использовались для замедления движения лошади вплоть до полной её остановки

Если лошадь ускоряла шаг, всадник бил её шпорами, это приучало лошадей носить своих наездников с осторожностью.

Находка римской шпоры на месте битвы в Тевтобургском лесу, Varusschlacht im Osnabrücker Land GmbH — Museum und Park Kalkriese. Начало 1-го века н.э.

Находка римской шпоры на месте битвы в Тевтобургском лесу, Varusschlacht im Osnabrücker Land GmbH — Museum und Park Kalkriese. Начало 1-го века н.э.

Как и всадник, лошадь могла быть хорошо защищена доспехами. Археологами найдены в большинстве своём чешуйчатые конские доспехи. Голову защищал специальный шлем, который мог быть украшен сложными, объёмными чеканными сюжетами. Такой шлем часто защищал глаза, обеспечивая при этом коню хороший обзор, и на глазницах могла быть не просто сетка, а искусные узорные переплетения. Широкое распространение конских доспехов подтверждается как археологическими, так и изобразительными источниками. Согласно современной терминологии, комплекс конных доспехов можно классифицировать как бардинг.

Бард (англ. Barding) — название конского доспеха (обычно употребляется по отношению к Средневековью). Изготавливается из металлических пластин, кольчуги, кожи или простёганной ткани. Состоял из следующих элементов: шанфрон (защита морды), критнет (защита шеи), пейтраль (защита груди), круппер (защита крупа) и фланшард (защита боков).

Трёхсоставная защита головы лошади (шанфрон), тип B. Бронза. Начало 3-го века н.э. Найдено в окрестностях форта Straubing, Германия.

Греческая защитная амуниция для лошади. Найдено в Италии. 6-ой век н.э.

Трёхсоставная защита головы лошади (шанфрон), тип B. Начало 3-го века н.э. Бронза, покрытая серебром. Найдено в окрестностях форта Straubing, Германия.

Противники Рима также активно использовали в бою тяжёлобронированную кавалерию. На колонне Траяна изображены парфянские катафрактарии: можно увидеть, что хорошо защищены были не только всадники, но и сами лошади, чьи чешуйчатые доспехи покрывали туловище и голову. Рим перенял данный тип кавалерии, который позднее встал на вооружение армии Восточной Римской империи.

Парфянский конь в доспехах с колонны Траяна. Начало 2-го века н.э.

Рисунок катафрактария из Дура-Европос. 2-3 век н.э.

Чешуйчатая конская броня. Железные чешуйки на кожаной основе. Середина 3-го века, Дура-Европос. Хранится в Yale University Art Gallery.

Первостепенную важность среди прочих элементов античного конного снаряжения всё же имеет седло. Так как всадник должен уверено держаться на лошади без стремян, и при этом сражаться, к надёжности и эргономике седла предъявляли повышенные требования

Изготавливалось оно из кожи, натянутой на деревянную основу, и наполнялось войлоком. Выкройки и этапы изготовления реконструкции античного седла представлены на рисунках ниже.

Схема строения античного седла

Этапы производства античного седла

Карта поверхности

Географическая карта или карта поверхности — это проекция или модельное отображение рельефа планеты в уменьшенном виде с использованием условных знаков. Карты отличаются по масштабу и степени детализации, могут отображать поверхность всей планеты или отдельных участков и имеют разное назначение.

Карта поверхности — изображение модели земной поверхности в уменьшенном виде. Credit: pixabay.com

Существуют справочные, учебные, туристические, технические, навигационные, тематические, физические и др. карты. Все они содержат разные виды искажений, связанных с переносом выгнутой поверхности Земли на плоскость.

Теории происхождения жизни на Земле

В этой статье мы кратко расскажем о нескольких гипотезах возникновения жизни, отражающих современные научные представления. Как считает известный специалист в области проблемы возникновения жизни Стэнли Миллер, о возникновении жизни и начале ее эволюции можно говорить с того момента, как органические молекулы самоорганизовывались в структуры, которые смогли воспроизводить самих себя. Но это порождает другие вопросы: как возникли эти молекулы; почему они могли самовоспроизводиться и собираться в те структуры, которые дали начало живым организмам; какие нужны для этого условия?

Есть несколько теорий о происхождении жизни на Земле. Например, одна из давних гипотез гласит, что она занесена на Землю из космоса, но неоспоримых доказательств этого нет. Кроме того, та жизнь, которую мы знаем, удивительно приспособлена для существования именно в земных условиях, поэтому если она и возникла вне Земли, то на планете земного типа. Большинство же современных ученых полагают, что жизнь зародилась на Земле, в ее морях.

Зенитная управляемая ракета 5Я25М (изделие 217МАМ) из состава ЗРК С-25

Как создавалась планета Земля

Ученые, изучающие Землю, привыкли работать в разных масштабах времени и пространства. Для того чтобы получить ответ на вопрос – как создавалась планета Земля, проводится масса научных изысканий. Физические размеры объектов исследования меняются от глобальных до микроскопических, от масс вещества объемом в кубические километры до межатомных пространств, измеряемых ангстремами. При решении той или иной научной задачи нередко приходится иметь дело с широчайшим диапазоном линейных масштабов; так, например, землетрясение, вызванное смещением пород по разрыву на расстоянии нескольких сантиметров, возбуждает сейсмические волны, распространяющиеся в Земле на тысячи километров.

Также и единицы измерения времени в геологии относятся не только к кратковременным явлениям типа землетрясений, вулканических извержений или ударов метеоритов, но и к событиям длительностью в десятки и сотни (например, меандрирование рек), тысячи (оледенения), миллионы (дрейф континентов) и даже миллиарды лет (формирование богатой кислородом атмосферы сегодняшнего дня). И в этом случае один и тот же процесс — допустим, выветривание — может опять-таки изучаться в широком диапазоне времени: от минут и часов лабораторного эксперимента, в ходе которого измеряется скорость растворения минерала, до тысяч лет, необходимых для образования почвы.

Параметры геологического пространства и времени, взятые в различных комбинациях, и составляют предмет данной статьи, включая многообразие крупных и менее значительных изменений, совершавшихся — и продолжающих совершаться — в истории Земли. У многих геологов, океанологов и ученых других направлений, изучающих Землю, время от времени появляется стремление рассматривать Землю как машину или даже как живой организм. Сравнение с машиной отражает одну из важных особенностей динамики Земли: несмотря на все изменения, наблюдаемые в самых разных масштабах времени и пространства, Земля в целом остается удивительно постоянной. В последние годы стало особенно ясно, что крупные составные части земного шара, такие, как ядро, мантия, кора, океаны и атмосфера, могут рассматриваться как сложная, взаимодействующая система с циклично происходящей передачей вещества от одного резервуара к другому. Механическая модель Земли как обширной циклически работающей системы сопоставима с физиологической моделью динамического равновесия, известной под названием гомеостаза.

Иерархия масштабов в работе ученого, изучающего Землю, лучше всего, пожалуй, иллюстрирует процесс создания геологической карты – творческий акт, который, воспользовавшись не вполне геологической фразеологией, можно охарактеризовать как графическое изображение в системе координат земной поверхности положения толщ горных пород разного возраста. Первый шаг в геологическом картировании – это работа в поле, при которой выявляются две важные особенности горных пород: их состав и возраст. В типичном обнажении горных пород обычно можно наблюдать лишь соотношения мелкого масштаба на расстояниях, измеряемых метрами. Обобщающая геологическая карта района составляется по совокупности такого рода наблюдений с использованием, как и при построении любого графика, приемов интерполяции и экстраполяции и с изображением элементов соответственно масштабу карты. На карте для площади, скажем, 200 км2можно видеть речную сеть и характерные складки и разрывы в коренных породах. Обильная информация, полученная при изучении каждого отдельного обнажения, принесена в жертву ради изображения более крупных особенностей. На карте района площадью многие тысячи квадратных километров начинают выявляться элементы еще более значительного размера: плоскогорья, горы, равнины, целые речные системы, контуры рифтовых долин, ледниковые озера. На картах же континентов и картах глобального охвата видны крупнейшие структуры поверхности континентов, главные горные цепи. В любом случае при генерализации изображения, связанной с переходом к более мелкомасштабным картам, хитрость заключается в определении тех деталей, которыми следует поступиться. Иными словами, суть этой стадии геологического анализа всегда состоит в отделении интересующего нас «сигнала» от «шума».

Почему планету Земля назвали голубой планетой. Земля — планета «голубых кровей». Ее выгодное положение в Космосе

Человечество всегда интересовалось устройством мира и вселенной, мечтало коснуться сокровенных тайн бытия. Много вопросов нашли свои ответы, но еще больше остались без них. Люди смогли увидеть не только звезды, но и наш дом из космоса, побывать на Луне. Именно космонавты смогли ответить на вопрос: «Почему Землю называют Голубой планетой?».

 Вид из космоса: голубая планета

Место, где мы живем, одновременно носит несколько названий:

  • «Земля» — официальное обозначение.
  • «Голубая планета» — указание на огромные площади с водой на поверхности.
  • «Зеленая планета» — дань уважения к природе, которая позволяет человеку найти свое место среди растительного мира.
  • «Живая планета» — в Солнечной системе это единственная планета, на которой есть жизнь.

Каждый волен сам для себя найти новое объяснение этим названиям. Кроме официальных версий существует множество народных вариантов.

 Как возникло сравнение

Неужели Земля действительно так сильно наполнена голубым цветом? Вот несколько вариантов:

1) Если поднять взгляд вверх, то мы увидим голубое небо. Земля имеет атмосферу с кислородом. Наблюдая прозрачную синеву над головой, люди уже с детства воспринимают окружающий мир как часть голубой планеты.

2) Если опустить свой взгляд из космоса, то название «голубая» становится настолько очевидным, что сомнений больше нет. Наша Земля названа так потому, что большую часть ее поверхности занимает вода. В процентном соотношении с сушей вода занимает около 71% поверхности всей планеты. В это количество входит и необъятный мировой океан, и реки, пронизывающие сушу, словно вены в теле человека, и озера различного размера. Все это в совокупности дает ощущение единого сине-зеленого пространства с небольшими вкраплениями коричневого, зеленого, желтого и других едва уловимых цветов и оттенков.

 Вода — важная часть Земли

Откуда взялось такое количество воды? Когда наша планета только возникла, на ее раскаленной поверхности не было ничего. Так называемая атмосфера состояла из газов. Самые легкие из них улетучивались, а более тяжелые (такие как водяной пар, углекислый газ, водород) окутывали Землю. Тем временем, поверхность планеты и ее атмосфера постепенно остывали. Когда же температура достигла отметки 100°С, начался процесс конденсации водяного пара. В результате, вода капельками стала падать на землю.

Процесс круговорота воды в природе знаком каждому школьнику средних классов. Но с чего же все начиналось? В окружающей среде было слишком большое количество пара, поэтому упомянутые выше осадки в виде проливных дождей продолжались значительную часть времени. Именно они и наполнили первые реки, озера и моря, которые объединились и сформировали Мировой океан.

В солнечной системе наша планета выгодно отличается от других не только наличием азонсодержащей атмосферы, но и наличием огромного количества воды. Кислород и питание через воду дали толчок к развитию флоры и фауны. Развитие жизни на Земле сложно представить без этих двух важных составляющих. Можно ли переоценить роль пресной воды в современном мире? Океаны и моря вместе с другими факторами формируют погоду, оказывая влияние на климат всей планеты.

Природа скрывает ответы на многие вопросы: почему земной шар голубой, почему светится луна , почему зимой холодно… Человечество и наполовину не приблизилось к разгадке всех их. Как только находится ряд объяснений привычным законам, тут же возникают новые факторы или дополнительная информация.Изучение окружающего мира помогает заглянуть внутрь себя.

Порой простые и очевидные ответы подсказывают народные легенды, поверья, приметы и даже детские сказки. Иногда ответов слишком много, поэтому каждый выбирает близкий ему по душе. Что же касается голубого цвета на Земле, то изучение его — лишь очередная ступень на пути саморазвития. А сколько еще нераскрытых тайн осталось!

Совместимое оборудование

Профилактическая обработка от болезней и вредителей

Благодаря чему зародилась жизнь на Земле

Все перечисленные гипотезы, кроме панспермии, подчеркивают, что жизнь может зародиться лишь при определенных, достаточно жестких условиях. Планета Земля просто соответствовала им. Какие же факторы обеспечили возможность для появления жизни?

Свойства Солнца

Жизнь может появиться только у звезд, время жизни которых исчисляется несколькими миллиардами лет, температурой 4000-7000 К, испускающих много ультрафиолета и достаточно жарких, чтобы жидкая вода существовала на относительно далеких от звезды планетах.

Звезда должна светить с примерно постоянной интенсивностью, иначе на планетах вокруг нее будут слишком непостоянные температуры. Наконец, звезда должна содержать много элементов помимо водорода и гелия. Солнце соответствует этим требованиям.

Расстояние от Земли до Солнца

Расстояние от Земли до Солнца составляет 147 098 291 километр. Наша планета находится в зоне обитаемости Солнца и при этом не слишком близко к нему. Это одна из причин, по которым температуры на Земле приемлемы для жизни.

Диаграмма, показывающая границы обитаемой зоны (зоны жизни) вокруг звезд, и то, как на эти границы влияет тип звезды. График включает планеты Солнечной системы (Венера, Земля и Марс), а также особо важные экзопланеты, такие как TRAPPIST-1d, Kepler-186f и нашего ближайшего соседа — Проксиму Центавра b.

Орбита Земли

Орбита Земли – почти правильный круг. Планета Земля практически все время вращается на одном и том же расстоянии от Солнца. Поэтому у нас нет сильных, резких и длительных сезонных перепадов температур.

Земля в сезонных точках своей орбиты (масштаб не учитывается).

Наклон оси

Наклон оси, как и орбита, влияет на сезонные перепады температур. Земная ось наклонена на 21,5-24,5°. Если наклон значительно выше, зимы будут очень холодными, а лето – очень жарким.

Наклон оси вращения Земли остается ориентированным в том же направлении по отношению к фоновым звездам, независимо от того, где она находится на своей орбите. Условное лето северного полушария находится в правой части этой диаграммы, где северный полюс (красный) направлен к Солнцу, зима же — слева.

Скорость вращения

Вращение Земли достаточно быстрое, чтобы суточные перепады температур также были невелики.

Наша планета делает полный оборот вокруг своей оси почти за 24 часа. Окружность Земли на экваторе составляет 40075 км — следовательно, объект на экваторе вращается со скоростью около 1670 км/час (делим земную окружность на осевой оборот). Скopocть cутoчнoгo вpaщeния будет разным при смещении oт экватора (на полюсах oкpужнocть мeньшe, потому и скорость практически равна нулю).

Масса Земли

Масса Земли достаточна, чтобы гравитация удерживала атмосферу вокруг планеты. При этом гравитация Земли относительно невелика и позволяет существовать многоклеточным организмам.

На изображении — нижняя граница зоны обитаемости с точки зрения массы планеты. Если объект меньше 2,7% массы Земли, его атмосфера «выветрится» прежде, чем на поверхности образуется жидкая вода. Авторы иллюстрации — ​​Harvard SEAS.

Наличие атмосферы

Наличие атмосферы – одно из самых важных требований к обитаемым планетам. Именно атмосфера защищает поверхность планеты и всех существ на ней от космических лучей. На планетах без атмосферы белковые организмы не могут существовать: их уничтожит радиация. Кроме того, атмосфера снижает перепады температур.

Жидкая вода

Жидкая вода – хороший растворитель и посредник в химических реакциях, обеспечивающих жизнедеятельность организмов. На Земле есть области, где жидкой воды мало – например, солончаки и Мертвое море. В этих зонах обитают только некоторые микроорганизмы, приспособившиеся к ним. Более сложная жизнь там невозможна.

Три пятых поверхности Земли находится под океаном, и дно океана так же богато рельефом, как и суша. Эта анимация имитирует падение уровня моря, постепенно раскрывая «невидимые» части поверхности.

Перечисленные критерии используются для оценки жизнепригодности планеты. Жизнепригодность – это возможность существования и самозарождения жизни.

Чем кормить кормящих крольчих после окрола

Основная современная научная теория

Возникновение Солнечной системы началось с гравитационного сжатия газопылевого облака, в центре которого сформировалось самое массивное тело — Солнце. Вещество протопланетного диска собралось в небольшие планетезимали, которые сталкивались между собой и образовывали планеты. Часть планетезималей была выброшена из внутренних областей в Пояс Койпера и в облако Оорта.Пояс Койпера — область Солнечной системы от орбиты Нептуна до расстояния около 55 а. е. от Солнца. Хотя Пояс Койпера похож на пояс астероидов, он примерно в 20 раз шире и массивнее последнего. Как и пояс астероидов, он состоит в основном из малых тел, то есть материала, оставшегося после формирования Солнечной системы. В отличие от объектов пояса астероидов, которые в основном состоят из горных пород и металлов, объекты пояса Койпера состоят главным образом из летучих веществ (называемых льдами), таких как метан, аммиак и вода. В этой области ближнего космоса находятся по крайней мере три карликовые планеты: Плутон, Хаумеа и Макемаке. Считается, что и некоторые спутники планет Солнечной системы (спутник Нептуна — Тритон и спутник Сатурна — Феба) также возникли в этой области.Облако О́орта — гипотетическая сферическая область Солнечной системы, служащая источником долгопериодических комет. Инструментально существование облака Оорта не подтверждено, однако многие косвенные факты указывают на его существование.Земля сформировалась около 4,54 млрд. лет назад из солнечной туманности. Вулканическая дегазация создала первичная атмосфера на земле была создана в результате вулканической деятельности, но в ней почти не было кислорода, она была бы токсичной и не была пригодна для жизни. Большая часть Земли была расплавленной из-за активного вулканизма и частых столкновений с другими космическими объектами. Одно из таких крупных столкновений, как считают, привело к наклону земной оси и формированию Луны. Со временем такие космические бомбардировки прекратились, что позволило планете остыть и образовать твердую кору. Доставленная на планету кометами и астероидами вода cконденсировалась в облака и океаны. Земля стала, наконец, гостеприимной для жизни, а самые ранние её формы обогатили атмосферу кислородом. По крайней мере, первый миллиард лет жизнь на Земле имела малые и микроскопические формы. Ну, а дальше пошел процесс эволюции.Как мы уже говорили ранее, нет единого мнения на этот счет. Поэтому гипотезы о происхождении Земли и других планет Солнечной системы продолжают возникать, при этом существуют и старые.

Состав и поверхность

По форме планета Земля походит на сфероид, сплюснутый на полюсах и с выпуклостью на экваториальной линии (диаметр – 43 км). Это происходит из-за вращения.

Структура Земли представлена слоями, каждый из которых обладает своим химическим составом. Отличается от других планет тем, что наше ядро имеет четкое распределение между твердым внутренним (радиус – 1220 км) и жидким внешним (3400 км).

Далее идет мантия и кора. Первая углубляется на 2890 км (самый плотный слой). Она представлена силикатными породами с железом и магнием. Кора делится на литосферу (тектонические плиты) и астеносферу (низкая вязкость). Можно внимательно рассмотреть строение Земли на схеме.

Планетарные уровни, отображающие внутренне и внешнее ядро, мантию и кору

Литосфера разбивается на твердые тектонические плиты. Это жесткие блоки, перемещающиеся по отношению друг к другу. Есть точки соединения и разрыва. Именно их контакт приводит к землетрясениям, вулканической активности, созданию гор и океанических траншей.

Можно выделить 7 главных плит: Тихоокеанская, Североамериканская, Евразийская, Африканская, Антарктическая, Индо-Австралийская и Южноамериканская.

Наша планета примечательна тем, что примерно 70.8% поверхности покрыто водой. Нижняя карта Земли демонстрирует тектонические плиты.

Земные тектонические плиты

Земной ландшафт везде разный. Погруженная в воду поверхность напоминает горы и обладает подводными вулканами, океаническими траншеями, каньонами, равнинами и даже океаническими плато.

В течение развития планеты поверхность постоянно менялась. Здесь стоит учитывать движение тектонических плит, а также эрозию. Еще влияет трансформация ледников, создание коралловых рифов, метеоритные удары и т.д.

Континентальная кора представлена тремя разновидностями: магниевые породы, осадочные и метаморфические. Первая делится на гранит, андезит и базальт. Осадочная составляет 75% и создается при захоронении накопленного осадка. Последняя формируется при обледенении осадочной породы.

Гора Эверест

С самой низкой точки высота поверхности достигает -418 м (на Мертвом море) и возвышается на 8848 м (вершина Эвереста). Средняя высота суши над уровнем моря – 840 м. Масса делится также между полушариями и континентами.

Во внешнем слое расположена почва. Это некая черта между литосферой, атмосферой, гидросферой и биосферой. Примерно 40% поверхности используется для агрокультурных целей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector