Космоса исследование и использование

Содержание

Спустя 120 лет со дня полета Гагарина

За 20−40 лет можно успеть реализовать практически все задачи, которые касаются исследования Солнечной системы. Человек вернется на Луну, видимо, высадится на Марс и, возможно, найдет способ спуститься в атмосферу Венеры. Это все займет два-три года. А вот добраться до пояса астероидов и дальше за это время не получится. Пусть эти пространства могут быть интересны и не только ученым. Мы писали, что такие небесные тела, как Психея, могут содержать миллионы тонн драгоценных металлов, которые пригодились бы для растущих потребностей Земли. Правда, лететь очень долго, и в лучшем случае полеты будут в рамках автоматических миссий.

А может, не зря упомянутый в начале Рэй Курцвейл прогнозирует технологическую сингулярность? Пусть нас заменят роботы. На самом деле, больше чем на 20 лет очень трудно прогнозировать: например, в 1990-е планировали через 20 лет запустить термоядерный реактор (энергия почти даром и почти отсутствие радиации при поломке) и полностью секвенировать геном человека. Сейчас полноценный термоядерный реактор мы по-прежнему планируем запустить через 20 лет, а вот секвенирование генома провели ударными темпами в начале XXI века — сложно было учесть все факторы.

NASA

Считается, что в бассейне Эридании на юге Марса около 3,7 миллиарда лет назад находилось озеро, а отложения на дне, вероятно, возникли из-за подводной гидротермальной активности. Здесь показана приблизительная глубина воды в этом озере

Для космоса одно из главный ограничений — время полета. Чтобы лететь быстрее, нужны новые двигатели. В проекте Вячеслава Турышева предлагается разгоняться, используя солнечный парус. При должных параметрах он позволит в разы сократить время путешествия.

Более сложный, но все еще возможный вариант — различные типы ядерных двигателей. Они разогревают топливо или ионизируют и ускоряют его электрическим полем и выбрасывают со скоростями, в разы превышающими таковые для существующих ракет. Помните о формуле Циолковского? Быстрее истечение газов, выше скорость ракеты!

А может быть, в будущем мы научимся создавать и применять антивещество в больших объемах для фотонных звездолетов за вменяемые деньги. Или нам удастся придумать новые принципы передвижения, не нарушая постулатов Общей теории относительности Эйнштейна, но обходя запрет на максимум в скорость света, проделывая кротовые норы в пространстве или находя короткие ходы через другие измерения.

Надеюсь, космос не ждет новая зима, как в 80-х годах XX века. И, учитывая развитие медицины, мы с вами вполне можем дожить до 120-летия со дня полета Гагарина, чтобы оценить точность этого прогноза.

Как мы будем искать следы жизни в альфа Центавре

Пока мы не можем отправиться искать жизнь за пределы Солнечной системы, но уже начали разведку: с помощью телескопов обнаружено около 5 тысяч экзопланет. Процесс их открытия ускоряется: запущенный в 2018 году телескоп TESS открывает их пачками, а наземные обсерватории помогают их подтвердить. Чем больше планет, тем больше шанс, что на какой-то из них будет жизнь. Для этого надо изучить и классифицировать экзопланеты, подобрав потенциально обитаемые миры.

Практически все экзопланеты открыты за последние 20 лет, и темп их обнаружения ускоряется. А телескоп имени Джеймса Уэбба потенциально нам проанализировать атмосферу экзопланет, находящихся в многих световых годах от нас, чтобы найти биомаркеры — вещества, которые обычно порождают живые существа: кислород, метан, фосфин и другие. Его ввод в строй ожидался в 2007 году и с тех пор постоянно переносится, но он может начать работать в ближайшие годы.

SpaceX/Getty Images

Запуск ракеты SpaceX Falcon-9 и капсулы Crew Dragon с мыса Канаверал, отправляющих астронавтов на Международную космическую станцию

Конечно, даже обнаружение планеты с живыми существами не гарантирует, что на ней разовьется разумная жизнь. Но и просто найти бактерии вне Земли будет большим открытием. Это позволит изучить принципы, по которым мы сможем предсказать, в каких условиях стоит искать жизнь, и сузить круг планет, на которых будем искать мыслящих существ.

В NASA уже готовят следующий совершенно фантастический шаг — попытаются разглядеть поверхность далеких экзопланет, очертания их континентов и свечения на поверхности (возможно, будет видно крупные города!). российского ученого Вячеслава Турышева с использованием солнечной гравитационной линзы прошла уже третью стадию отбора в конкурсе визионерских проектов. Это значит, что велика вероятность ее реализации. Идея в отправке телескопа в ту точку, где Солнце соберет лучи от выбранной планеты. Сначала с помощью таких инструментов, как TESS, телескоп Джеймса Уэбба и другие, выберут планеты, на которых с высокой вероятностью есть жизнь. После чего в противоположную от планеты сторону отправят телескоп, который в фокусе (области, где Солнце, как линза, соберет свет от этой планеты) рассмотрит ее увеличенное изображение. Вячеслав Турышев считает, что проект уже можно осуществить при нынешних технологиях, но потребуется развить их, выжать из них максимум. Подготовка может занять лет десять, еще 20−25 лет ракете понадобится, чтобы долететь до фокуса солнечного гравитационного телескопа. Значит где-то к 2060 году мы сможем увидеть поверхность далеких экзопланет.

Еще один амбициозный проект Breakthrough Starshot инициировал технологический инвестор Юрий Мильнер. Предлагается создать рой из небольших зондов и разогнать их до околосветовой скорости с помощью сверхмощных лазеров. Они могли бы примерно за 20 лет достичь соседней звездной системы и передать изображение планеты, которая может вращаться вокруг одного из трех светил звездной системы альфа Центавра. Этот проект требует решения множества технических проблем: нет достаточно мощных лазеров, не создан материал парусов, которые не сгорят под их светом, нет достаточно мощных чипов, чтобы передать сигнал на расстояние четырех световых лет, и антенн, способных его уловить.

Правовые основы освоения Вселенной

Космическое пространство – это новое и уникальное поле для человеческой деятельности, которое мы только начинаем осваивать. Из-за ряда особенностей, исследования в основном носят международный характер. Поэтому начало космической эры привело к появлению новой отрасли права, предназначенной для регулирования отношений между государствами и организациями в этой специфической сфере деятельности. Сегодня правовой режим регламентируют несколько международных договоров о космическом пространстве, принятых в разное время.

Работы в этом направлении начались еще до запусков на орбиту, в конце 50-х годов. Их инициатором стала Организация Объединенных Наций. Первыми были рассмотрены предложения о мирном использовании космического пространства и запрете на испытания ядерного оружия на орбите.

Правовой режим изучения и освоения космического пространства регламентируют несколько международных договоров, принятых в разное время

Буквально через несколько дней после запуска «Спутника-1» Генассамблея ООН призвала создать инспекцию для обеспечения исключительно мирного использования космического пространства. По данному вопросу была принята специальная резолюция. В 1958 году при ООН появился Комитет (КОПУОС), в задачи которого входило изучение правовых проблем исследований околоземного пространства. Он работает и сегодня, имеет два подкомитета: юридический и научно-технический.

Можно сказать, что в те годы были заложены основы международного космического права, регулирующие деятельность в данной сфере. С трибуны ООН был четко сформулирован главный принцип: космическое пространство и небесные тела свободны для исследования и освоения, и не подлежат присвоению тем или иным государством. Космос должен служить общим интересам человечества.

В 1967 году был подписан Договор о международном режиме использования космического пространства и небесных тел, включая Луну. В 1968 году появилось Соглашение о спасении космонавтов, а в 1972 – Конвенция об ответственности за ущерб, причиненный КА. В 1979 году было подписано Соглашение о деятельности на Луне и других небесных объектах.

В 1982 году была принята конвенция по радиосвязи, которая регулировала вопросы использования радиочастот, а также геостационарной орбиты.

В 80-е годы Комитетом были разработаны несколько международных соглашений, направленных против размещения в космосе противоспутникового оружия. В 2006 году аналогичный документ на рассмотрение ООН внесли Россия и Китай. В 2011 году Генассамблея приняла резолюцию, в которой содержались рекомендации по укреплению доверия между государствами в космической деятельности.

Существующая сегодня договорная база определяет для космического пространства режим, абсолютно отличный от того, что действует в отношении воздушного пространства. Последний находится под суверенитетом государства, над территорией которого он расположен. С космосом другая проблема: нет четкого юридического определения, на какой высоте он начинается. Сегодня существует более тридцати гипотез, определяющих границу между околоземным пространством и атмосферой, но ни одна из них не получила общего или хотя бы подавляющего признания.

Космическое право — очень молодое направление юридической науки, находящееся еще на стадии формирования

В 1979 году СССР предложил в качестве официальной границы космоса считать отметку в сто километров над уровнем моря. Великобритания и США выступили против этой инициативы, заявив, что любая демаркация будет только мешать космическим исследованиям.

Позже несколько экваториальных стран заявили, что геостационарная орбита из-за ее специфического расположения находится под их суверенитетом. Понятно, что подобный месседж не был поддержан международным сообществом.

Искусственный спутник Земли

По сей день дата запуска «Спутника-1», 4 октября, является началом космической эры человечества. Имя аппарата стало нарицательным, используясь сегодня во многих языках мира.

Запуск «ПС-1» («Простейший Спутник-1») осуществлялся с 5-го научно-исследовательского полигона Министерства обороны СССР «Тюра-Там», которому суждено было получить название «Байконур» в далеком будущем.

Ракета-носитель «Спутник» на базе межконтинентальной баллистической ракеты «Р-7» стала самой известной в истории, отправив в космос множество аппаратов, включая «Восток-1» с Гагариным на борту.

Но это было после. А в 1957 радиолюбители всего мира слушали позывные аппарата с помощью обычной радиолюбительской аппаратуры на расстоянии до 2–3 тысяч километров.

Вопреки общепринятому мнению, «Спутник» не был доступен для наблюдения невооружённым глазом, но его вторая ступень отлично просматривалась в темное время суток наравне со звездами.

В каких странах реализуются программы пилотируемых космических полетов?

Роскосмос показал первый модуль новой орбитальной станции

Космонавты отправятся на новую станцию уже в 2026 году, сообщили в Ракетно-космической корпорации «Энергия» имени С.П. Королева (входит в состав Госкорпорации «Роскосмос»). Роскосмос 23 апреля 2021 года объявил, что годом раньше в околоземное пространство отправится первый блок станции — научно-энергетический. Его выведут на орбиту выше, чем сейчас у МКС, а значит и возможностей для исследования космоса будет больше.

Новая станция будет принципиально отличаться от МКС. Первое и, пожалуй, главное — так называемый наклон, то есть насколько орбита станции удалена от экватора. У МКС наклон почти 52 градуса. Планируется, что у нашей будущей национальной станции дойдет до 97 градусов. Она будет находиться на так называемой высокоширотной орбите. Кроме того, в отличие от МКС, которая видит 20% территории России, будет 100%-ный обзор нашей страны. И главное, такой наклон дает больше возможности изучать дальний космос.

«Несмотря на то, что у нас с 60-х годов накоплен огромный опыт пилотируемых полетов, каждый раз мы открываем для себя что-то новое. И как только мы выходим за пределы низкой орбиты, которую мы уже освоили, и привычного нам наклонения, мы столкнемся с нюансами, в особенности в части систем жизнеобеспечения и медико-биологического оснащения космонавтов. Мы должны быть к этому готовы, конечно, прежде чем будем говорить о каких-то долговременных миссиях за пределами низкой околоземной орбиты, к Луне, к Марсу или куда-то еще», — рассказал исполнительный директор Роскосмоса по перспективным программам и науке Александр Блошенко.

Научно-энергетический модуль изначально планировалось отправить в космос в 2024 году, для стыковки с МКС. Теперь другие задачи, куда масштабнее. Модуль планируется вывести на орбиту через четыре года.

«Если в 2025 году мы развернем базовый модуль новой станции, то тогда мы полетим новым кораблем, у нас же в 2025 году планируется запуск нового пилотируемого корабля „Орел“, мы планировали лететь на МКС. Вот вчера я встречался с отрядом космонавтов нашим, собирал их всех, и мы сейчас рассматриваем возможность изменить полетное задание, то есть лететь уже не на МКС, а уже пилотируемый новый корабль с экипажем полетит на нашу, российскую станцию», — рассказал генеральный директор Госкорпорации «Роскосмос» Дмитрий Рогозин.

Предполагается, что на начальном этапе станция будет выглядеть вот так: помимо научно-энергетического модуля, будет еще три: узловой, шлюзовой и базовый. После 2030 года добавятся еще несколько блоков — целевые модули. Все будет зависеть от поставленных к тому времени задач.

«Будет так называемый выносной стапель, на котором мы можем парковать разного рода автоматические аппараты, их ремонтировать, дозаправлять, юстировать полезную нагрузку, разного рода аппаратуру, и потом опять отправлять в космическое пространство», — пояснил первый заместитель генерального конструктора по летной эксплуатации, испытаниям ракетно-космических комплексов и систем ПАО «РКК «Энергия» Владимир Соловьев.

А это уже рывок вперед для освоения дальнего космоса. Планируется, что отправится на орбиту первый модуль не на «Протоне», как планировалось раньше, а уже на «Ангаре» с «Восточного». До 2025 года первый модуль будущей российской орбитальной станции будет серьезно модернизирован. Усовершенствованы системы управления, питания, стыковки. Кроме того, в нем будут находиться космонавты, и необходимо сделать его в том числе и жилым.

Космос Будущего

Представим себе наше недалекое будущее. 2025 год. Просторы вселенной бороздят больше долговременные орбитальные станции.

Экипаж станции – 25 человек. Но вот возникает необходимость посетить соседнюю станцию для оказания помощи, пополнения жизненно важных ресурсов, а может просто нанести визит вежливости. Для межпланетной связи, связи с Землей, как шлюпки на корабле, будут иметься вспомогательные реактивные аппараты.

Специальные космические такси будут совершать разведывательные посадки на неизвестные планеты. Отделившись от корабля – матки, они отправляются к планете и, выполнив задание, возвратятся на орбиту.
Стремительное развитие космической техники в той же степени реально, как и удивительно.

Космическое пространство всегда окрыляло человеческую фантазию, вызывало бесконечное множество предложений и гипотез. Одни из них подтверждались практикой, от других приходилось отказываться, немало и таких, которые до сих пор занимают и волнуют умы ученых, посвятивших себя космонавтики.

Штурм космоса только начался.

Но то, что уже достигнуто, открывает для человеческой мысли широчайшие просторы. Пройдет время – и, может быть земляне начнут совершать регулярные рейсы в космос, найдя пути к далеким планетам. И гарантия этого – осуществленные фантазии людей, создавших космические корабли и поручившим своим первопроходцам проверить их прочность, смело шагнуть в бездну Великого космоса.

III.ЗАКЛЮЧЕНИЕ

Все знают, каким великим подвигом была жизнь К. Э. Циолковского. «Основной мотив моей жизни, — писал он,- не прожить даром жизнь, продви­нуть человечество хоть немного вперед. Вот почему я интересовался тем, что не давало мне ни хлеба, ни силы, но я надеюсь, что мои работы, может быть скоро, а может быть и в отдаленном будущем, дадут обществу горы хлеба и бездну могущества».

Вступление человечества в космическую эру было подготовлено всей его предшествующей историей.

Это закономерный процесс развития производи­тельных сил, объективно существующих законов развития общества на определенном этапе.

Развитие космических исследований — это накопление знаний, которые увеличивают экономическое могущество человека.
Уже в настоящее время космические аппараты широко используются в народном хозяйстве. Например, использование космической техники в системах связи существенно повысило ее эффективность, позволило связать между собой все уголки земного шара, объединить всех людей Земли в одну аудиторию.
Создание специальных спутников Земли, способных собирать необходимую для геологии информацию, позволило получить качественно новые данные о многих процессах, формирующих строение и состав нашей планеты.

Космическое фотографирование может давать информацию для выявления полезных ископаемых. При этом доступной становится любая точка земной поверхности.
Итак, теперь в нашем распоряжении надежная спутниковая теле- и радиосвязь, точные прогнозы погоды и многое другое.

Но, к сожалению, в результате активизации исследований, резкого увеличения числа запусков ракет-носителей и других аппаратов, а также связанных с этим последствий все чаще происходит загрязнение земной и околоземной среды, что пагубно влияет на экологию Земли.

В результате многочисленных исследований, учеными было доказано, что весь космический мусор скапливается в области 900 км. от земли. И довольно часто этот мусор падает обратно на землю.
Большую проблему таят в себе спутники, брошенные человеком и несущие ядерные энергетические устройства, которым, для исчезновения радиоактивности необходимы десятки тысяч лет…

Чтобы решить эту проблему надо:

• формирование технологий и конструкций, приводящих к минимизации отходов;
• необходимо заранее продумать меры по, ликвидации космического мусора;
• важно сократить число выводимых в космос аппаратов и использования многоцелевых спутников и многое другое…

В ближайшие десятилетия людям Земли предстоит решать такие фундаментальные проблемы, как интенсивный рост народонаселения, истощение земных ресурсов, энергетический кризис.
Разрешить все эти проблемы в земных условиях практически невозможно.

Аналоги

Среди аналогов, которые сегодня можно увидеть в продаже, следует выделить:

  • наручники БРС 1, 2 из оцинкованного металла, которые обладают схожими характеристиками по вопросу надежности и секретности замка. По стоимости модель-аналог будет несколько дороже наручников «Краб»;
  • наручники конвойные БРС 3 оксидированные;
  • неплохо себя зарекомендовали и наручники БОС Нежность.

Рассмотрению особенностей и преимуществ наручников БРС-3 перед наручниками Краб посвящено и это видео:

Атмосфера Титана

Официальное расстояние от поверхности земли до космоса

Страны не пришли к единому мнению, где заканчивается воздушное пространство. Это связано с проблемой установления высотного предела государственного суверенитета.

В своей практике государства придерживаются нормы, согласно которой объекты в свободном полете на орбите с наиболее низкими перигеями находятся в сфере действия границы свободы исследования и использования космического пространства, то есть в открытом космосе.

ФАИ (Международная авиационная федерация) регистрирует полет как космический, начиная от линии Кармана (100 км). В таком интервале от планеты аппарат может совершить полный орбитальный виток вокруг Земли, после чего начинаются его вход в плотные слои атмосферы, торможение и падение.

Международное космическое право базируется на следующих принципах:

  1. В космосе не существует границ государств.
  2. Исследования космического пространства проводятся в целях всего человечества согласно международному праву, включая устав ООН.
  3. В космосе запрещено размещать оружие массового уничтожения.
  4. Искусственные космические объекты находятся под юрисдикцией государства, запустившего их.
  5. Страны учитывают интересы друг друга, организуют консультации.
  6. Космонавты — посланцы человечества.

Линия Кармана — начало космического полета по мнению ФАИ. Credit: NASA, Galileo.

Данные нормы иногда вступают в противоречие с интересами мировых держав, так как вопрос о государственном суверенитете воздушного пространства тесно связан с лимитированием безвоздушных пространств.

Освоение космоса по странам

Космические агентства

Основная статья: Список космических агентств

  • Бразильское космическое агентство — основано в 1994 году.
  • Европейское космическое агентство (ЕКА) — .
  • Индийская организация космических исследований — .
  • Канадское космическое агентство — .
  • Китайское национальное космическое управление — .
  • Национальное космическое агентство Украины (НКАУ) — .
  • Национальное управление США по аэронавтике и исследованию космоса (НАСА) — .
  • Федеральное космическое агентство России (ФКА РФ) — ().
  • Японское агентство аэрокосмических исследований (JAXA) — .
  • Корейский комитет космических технологий — предположительно 1980-е.

Сравнение с американским аналогом

В 1978 году были проведены сравнительные испытания гранатомёта ГП-25 с выстрелом ВОГ-25 и 40-мм подствольного гранатомёта М-203, установленного на винтовке М16А1, с выстрелом М-406. Испытания показали значительное преимущество отечественного гранатомёта и выстрела к нему перед аналогичной системой производства США. Выстрелы ВОГ-25 и М-406 сравнивались стрельбой по местности, где располагалась мишенная обстановка, имитирующая открыто расположенную живую силу (лежащие ростовые мишени). При этих испытаниях было выявлено, что частота поражения мишеней на тактическом поле от разрыва гранаты выстрела ВОГ-25 в 3–4 раза выше чем от разрыва осколочной гранаты выстрела М-406. .

Карл Саган в поисках внеземных существ

«Какова бы ни была причина того, что вы находитесь на Марсе, я рад, что вы здесь, и желал бы быть с вами».

Такая надпись нанесена на памятник, который можно найти на красной планете, если, оказавшись на ней, вбить координаты 19°20′ с. ш., 33°33′ з. д.

Мемориальная станция Карла Сагана на Марсе. Фото сделано марсоходом Соджорнер

(Фото: nasa.gov)

Собственно, само это место известно под названием «Мемориальная станция Карла Сагана», то есть посвящена человеку, который всю жизнь соблазнял человечество на масштабные космические миссии для поисках внеземной жизни и дальнейшей экспансии

Карл Саган сумел удачно совместить в себе рассудочную строгость ученого с романтическим стремлением донести как можно большему количеству людей богатство научного мира и важность исследований космоса

С одной стороны, когда он оказался частью проектов NАSА по исследованию планет Солнечной системы, то сумел решить загадку высокой температуры на Венере. Также ученый объяснил цвет Титана и понял, с чем связаны сезонные изменения на поверхности Марса.

С другой стороны, Саган со страстью отдавался и проектам, граничащими с визионерством. В частности, вместе с советским астрономом Иосифом Шкловским ученый создал программу SETI (Search for Extraterrestrial Intelligence) — масштабный проект, посвященный поиску радиосигналов внеземных цивилизаций. И если Шкловский уже в 70-е годы в проекте разочаровался (см. его статью «О возможной уникальности разумной жизни во Вселенной»), то Саган до конца жизни продолжал верить, что внеземной сигнал будет пойман.

Но, пожалуй, самой значимой деятельностью в жизни ученого, которая в какой-то момент заслонила собой все остальное, стала популяризация науки. Сам Саган в книге «Мозг Брока» так объяснял свой поворот в эту область: «У людей есть огромный неудовлетворенный интерес к глубоким научным вопросам. Популярность псевдонауки — это укор школам, прессе и коммерческому телевидению за скудость, сухость и неэффективность научного образования , и нам, ученым, за то, что мы не стремимся популяризовать нашу сферу деятельности».

Для научной проповеди (современники часто критиковали его за то, что науку он превратил едва ли не в религиозный культ) Саган использовал любые доступные на тот момент средства. Он часто выступал на телевидении. Чуть ли каждый год выпускал новую книгу. Писал бесчисленные статьи и давал столь же бесчисленные интервью.

Но главным его детищем стал телесериал «Космос: персональное путешествие», снятый киностудией Wаrner Brothers по одноименной книге, написанной Саганом в 1985 году.

Эпизод из сериала «Космос» Карла Сагана

Этот проект не только принес ученому еще большую известность, но и перевернул само представление о том, как можно снимать научно-популярные фильмы о космосе — так, чтобы они привлекали многомиллионную аудиторию по всему миру.

4 июля 1997 года на Марсе высадился самоходный ровер «Sojourner». На протяжении трех месяцев он передавал на Землю изображения с поверхности красной планеты, превратив эти снимки в едва ли не главный инфоповод того лета. Одним из главных инициаторов этой миссии вновь оказался Карл Саган. Правда, до самой высадки дожить ему было не суждено. Самый страстный космический мечтатель XX века умер в декабре 1996 года, удостоившись памятной таблички, которая стоит теперь на Марсе.

«Мы вошли, почти не заметив этого, в эпоху самых беспрецедентных исследований и открытий со времен Ренессанса, — писал Карл Саган в «Мозге Брока». — Мне кажется, что практическая польза сравнительной планетологии для наук, изучающих Землю, ощущение приключения, которое вызывает исследование других миров у общества, почти лишенного возможности приключений, философский смысл поиска космической перспективы — вот чем запомнится наше время в конечном итоге. Спустя столетия, когда наши насущные политические и социальные проблемы будут казаться такими же далекими, какими кажутся нам сейчас проблемы войны за австрийское наследство, наше время, возможно, будут вспоминать главным образом за один факт: это была эпоха, когда население Земли впервые вступило в контакт с окружающим космосом».

Полеты в космическое пространство

Чтобы преодолеть притяжение нашей планеты и выйти на ее орбиту, физическое тело должно достигнуть первой космической скорости –7,9 км/с. Преодолеть этот рубеж сумел советский «Спутник-1» в 1957 году.

Для победы над гравитацией Земли и выхода в межпланетное пространство, аппарат должен двигаться быстрее 11 км/с. Это вторая космическая скорость. Впервые она была достигнута в январе 1959 года советским автоматическим зондом «Луна-1».

Космическое пространство — максимально враждебная для человека среда

Для выхода в межзвездное пространство и преодоления притяжения Солнца, необходимо развить третью космическую скорость, которая составляет 16,67 км в секунду. Пока наибольшей скоростью покидания Земли обладал аппарат «Новые горизонты» – 16,26 км/с. По пути он смог прибавить еще 4 км/с за счет гравитационного маневра около Юпитера. В будущем это позволит ему покинуть пределы нашей системы и отправиться в межзвездное пространство.

Для преодоления притяжения Млечного Пути и выхода за его пределы необходима четвертая космическая скорость — 550 км/с. Солнце относительно центра галактики двигается медленнее – со скоростью 220 км/с.

Не Кукурузник

Ан-2 часто называли «Кукурузником», хотя это не совсем верно. Такое прозвище получил У-2, с которого впервые начали опылять поля, в том числе и засеянные кукурузой, на Украине и в Белоруссии. Творению Олега Антонова кличка досталась как бы в наследство – силуэты самолётов похожи, да и других бипланов в небе СССР практически не было.

Назвать точное количество выпущенных Ан-2 сложно из-за того, что в Китае их производили в обход лицензии. По разным оценкам, собрано от 18 до 20 тысяч машин. Бесспорно установлено другое – Ан-2 является первым в мире самолётом, который выпускается уже на протяжении 60 лет.

Лунные и марсианские надежды

Применение новых технологий и активное сотрудничество NASA с частными компаниями в разы снизило стоимость проектов. До 2030 года мы снова сможем увидеть человека на самой Луне и на ее орбите. Первоначально пилотируемые миссии планировались уже на ближайшие годы, но, скорее всего, немного сдвинутся. Если NASA и SpaceX затянут с посещением Луны, их могут опередить китайцы или «Роскосмос». Китай тратит на космос значительные ресурсы и может создать необходимые технологии за следующие десять лет. Россия уже имеет, пожалуй, лучшие ракетные двигатели в мире и продолжает их совершенствовать. К тому же наши страны недавно заключили меморандум о создании Лунной станции. Объединившись, они могут приблизить и высадку на Луну.

Пока Луна не представляет коммерческой ценности, но если возвращение к 2030 году удастся, то ее плотное изучение потребует постоянных лунных баз. А обнаруженные вода и полезные ископаемые, возможно, сделают выгодным коммерческое производство на Луне к 2081 году. Интересно, будет ли их видно с Земли?

Марс — более сложная цель. Но и при современных технологиях мы уже способны построить достаточно большие и мощные ракеты, чтобы обеспечить полет и возвращение людей на него. Расчеты показывают, что топливо, кислород и некоторые другие необходимые вещества можно будет добыть на Марсе, а значит, не придется их везти с Земли. По самым оптимистичным подсчетам — конечно, их сделал фанат Красной планеты Илон Маск, — астронавты смогут высадиться на Марс в 2028 году. Думаю, что более реальна высадка к 2040 году — все-таки сначала надо отработать все элементы пилотируемой миссии на Луне.

КЦ «Южный»/Роскосмос

Вывоз на стартовый комплекс «Союз-2.1б»

Не уверен, что действительно можно рассчитывать на создание колонии на Марсе, но если удастся, например, обнаружить на Красной планете жизнь или следы ее присутствия в прошлом, то планете будет обеспечен интерес и регулярные миссии, как пилотируемые, так и автоматические.

Увы, для человека это все. Высадка на Венеру практически невозможна — слишком тяжелым будет посадочный модуль для космонавтов, чтобы выдержать давление 90 атмосфер и температуру 470 градусов на поверхности соседней планеты. Да и передвигаться в таких условиях тяжело. Можно помечтать о высадке сразу в дирижабле в слои атмосферы с более привычными давлением и температурой, однако схема выглядит сложной и, главное, цель непонятна. На Луне и Марсе человек сможет использовать свои преимущества перед роботами, чтобы выполнять исследования или даже работать. На Венере слишком сложные условия, чтобы найти достойную цель для отправки туда человека.

Чтобы вырваться за земную орбиту, нужна мегаракета

В конце XIX века калужский ученый-любитель Константин Циолковский вывел формулу для движения тела с переменной массой. Чтобы ракета могла двигаться быстрее, нужно было либо увеличить скорость истечения газов, либо увеличить долю топлива в общей массе ракеты. Но если первое изменить почти невозможно — скорость истечения газов зависит от топливной пары и практически фиксированная, то второе очень затратно. Масса топлива в ракетах составляет около 90% от общего веса, увеличивать ее просто некуда — нужны еще баки, чтобы залить в них топливо и окислитель, жилой модуль для космонавтов, корпус ракеты, наконец.

TAKE 27 LTD/SCIENCE PHOTO LIBRARY/Legion Media

Компьютерная модель космического отеля на земной орбите

Например, американцам, чтобы слетать на Луну, пришлось создать ракету «Сатурн-5», масса которой была почти 3 тысячи тонн и высота — более 100 метров. Лунная программа обошлась США в $125 млрд по современному курсу. И если до Луны лететь три дня, то полет на Марс займет месяцев семь, — соответственно, увеличились бы и расходы. Стимул тратить такие деньги у США пропал, когда СССР не смог выполнить свою лунную программу.

Формула Циолковского с тех пор не изменилась, затраты на космос в таких масштабах уже не окупают политические и научные преимущества, получаемые в таких экспедициях. Зато появились новые технологии. Многие из них касаются усовершенствования систем управления, но есть и новые материалы, более мощные двигатели, а у SpaceX еще и возвращаемая первая ступень, благодаря которой снижаются затраты на миссии.

Атмосфера и околоземное пространство

На уровне моря атмосферное давление равняется 101,325 кПа, что составляет одну атмосферу. Подавляющая часть населения планеты – 99% – живет на высоте ниже 2 км. Выше этой отметки могут находиться только акклиматизировавшиеся люди типа гималайских шерпов, у остальных начинается «горная болезнь», вызванная недостатком кислорода. Большая часть (около 80%) массы атмосферы приходится на ее нижний, более плотный слой, находящийся до высоты в 7 км.

На высоте 5 км атмосферное давление уменьшается вдвое, а на отметке 12 – проходит граница тропосферы и стратосферы, выше которой не поднимаются облака. Двенадцать километров — потолок полета пассажирских авиалайнеров, также здесь находится предел кратковременного дыхания чистым кислородом.

Строение атмосферы нашей планеты и околоземного пространства

На 18,9-19,35 км проходит линия Армстронга – начало космического пространства для человеческого организма. Здесь начинают кипеть слюна и слёзы, набухают глаза. 20 км считается пределом биосферы – выше не могут жить даже бактерии. 25-26 км – предельная высота полета для большинства реактивных самолетов. На 20-25 км в средних широтах расположен озоновый слой, оберегающий планету от действия ультрафиолета.

На высоте 35 км находится так называемая тройная точка воды – из-за низкого атмосферного давления она кипит при температуре 0 °C. 37,8 км – рекордная высота полета для самолета с турбореактивным двигателем. Рекорд был поставлен советским истребителем МиГ-25М. А максимальная отметка, на которую поднимался человек в воздухоплавательном аппарате, составляет 41,42 км. Это достижение занесено в Книгу рекордов Гиннесса. На высоте 50 км находится граница стратосферы и начинается мезосфера.

100 км – линия Кармана, после которой начинается космос. Примерно на этой же высоте находится отражающий радиоволны слой Кеннелли — Хевисайда. Выше этой границы начинается околоземное пространство, отличия которого от других областей Вселенной обусловлены влиянием нашей планеты. Оно выражается в наличии и концентрации заряженных частиц, их энергии, воздействии магнитного поля Земли и др. Считается, что данная область пространства имеет протяженность в 10-12 земных радиусов. Однако некоторые астрономы полагают, что оно простирается до орбиты Луны.

Большие метеоры и болиды начинают сгорать на высоте в 135 км от поверхности Земли. Выше 160 км начинается область стабильных низких околоземных орбит. Высота первого космического полета – Фау-2 в 1944 году – составляла 188 км, Гагарин поднимался на 302 км. На расстоянии в 350 км от земной поверхности начинаются самые низкие орбиты с долгосрочной стабильностью. МКС летает примерно на высоте 400 км. Баллистические ракеты (МБР) в наивысшей точке траектории поднимаются приблизительно на 1300 км.

Атмосфера Земли. Что происходит на различных высотах

На высоте 2 тыс. км находится граница между низкими и средними околоземными орбитами. На данном уровне нет влияния атмосферы, поэтому спутники могут существовать годами. На расстоянии 100 тыс. км от поверхности проходит верхняя граница экзосферы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector