Малые десантные корабли на воздушной подушке проекта 12321
Содержание:
Состав серии
МДК-51 |
Приморский судостроительный завод |
|||
МДК-122 |
||||
МДК-119 |
||||
МДК-120 |
||||
«Керкира» (Kerkyra) L182 |
||||
«Закинтос» (Kakynthos) L183 |
||||
Судостроительный завод «Море» |
||||
ВМС КНР |
||||
Состав серии
В период с 1970 г. по 1985 г. на ПО «Алмаз» г. (Санкт-Петербург) было построено 20 МДКВП данного типа (1 корабль проекта 1232 и 19 кораблей проекта 12321). При этом МДК-66 в результате пожара в 1973 г. получил сильные повреждения и был построен фактически заново, при этом первоначальные корпусные конструкции были разобраны на металл, а задел оборудования и механизмов использовался при постройке других кораблей серии. В настоящее время все МДКВП исключены из списков флота. Представители данной серии представлены в таблице.Цвета таблицы: Красный — Списан или утилизирован или потерян
Иллюстрация | |||||||
---|---|---|---|---|---|---|---|
ПО «Алмаз» |
БФ |
||||||
КФл |
|||||||
ЧФ |
|||||||
Состав серии
В период с 1970 г. по 1985 г. на ПО «Алмаз» г. (Санкт-Петербург) было построено 20 МДКВП данного типа (1 корабль проекта 1232 и 19 кораблей проекта 12321). При этом МДК-66 в результате пожара в 1973 г. получил сильные повреждения и был построен фактически заново, при этом первоначальные корпусные конструкции были разобраны на металл, а задел оборудования и механизмов использовался при постройке других кораблей серии. В настоящее время все МДКВП исключены из списков флота. Представители данной серии представлены в таблице.Цвета таблицы: Красный — Списан или утилизирован или потерян
Иллюстрация | |||||||
---|---|---|---|---|---|---|---|
ПО «Алмаз» |
БФ |
||||||
КФл |
|||||||
ЧФ |
|||||||
Зимние пассажирские перевозки
В 1971 году СВП «Сормович» проходил зимние испытания в районе Телячьих островов. Испытания проводились с целью определения возможности пассажирских перевозок в зимний период. На случай, если «Сормович» застрянет во льдах, был приготовлен армейский бронетранспортер для эвакуации судна из-за ледяного затора. Испытания прошли успешно, но от идеи пассажирских перевозок на СВП зимой отказались.
Несмотря на то, что судно проектировалось с учетом эксплуатации и в зимние месяца, принятие такого решения непонятно. Возможно, это было связно с многочисленными проблемами в доводке судна, либо, вероятнее всего, в практически полностью отсутствующей инфраструктуре речного флота для зимней навигации на реке Волга.
В ходе этих испытаний была выявлено явление разрушение ледяного покрова. Появление значительных деформаций ледяного покрова при движении СВП отмечалось в процессе испытаний, однако этим фактам не придали значения и дальнейшие исследования в этом направлении не выполнялись
Уделив данному явлению должное внимание, могли бы данные разработки пустить в нужное русло, создав специальные ледокольные СВП. Но видимо не судьба…
Вооружение
ПУ ЗРК А-22 «Огонь»
А-22 «Огонь»
Выстрелы к А-22 «Огонь»
140-мм реактивная система залпового огня – огнеметно-зажигательный комплекс. Система создана и производится ГНПП “Сплав” (г.Тула) и предназначена для вооружения речных и десантных кораблей, а так же судов на воздушной подушке.
Наведение – оптический прицел “Шелонь-14” (дальномерно-визирное устройство – ДВУ-3-БС, масса 300 кг). Дальномерно-визирное устройство предназначено для дистанционного управления стрельбой комплекса по береговым и надводным целям,а также для поиска и обнаружения целей в светлое и темное время суток при условии их метеорологической видимости. ДВУ-3-БС обеспечивает выработку полных углов горизонтального и вертикального наведения и автоматическую передачу их на пусковую установку.
Пусковая установка – МС-227, 22 ствола, в походном положении убирается под палубу, перезарядка вручную.
Размеры (ДхШхВ) 2125 мм х 1735 мм х 2200 мм
Угол наведения по вертикали – от -10 до +65 град Угол наведения по горизонтали – сектор 320 град Масса ПУ – 1430 кг (без боезапаса), 1700 кг с боезапасом Масса комплекса: – без/с боезапасом – 2000 кг/2600 кг
ТТХ артиллерийской части: Калибр снаряда – 140 мм Калибр ствола ПУ – 140,3 мм
Дальность действия – 800-4500 м Скорость снаряда на срезе ствола – 27-40 м/с Скорость снаряда в конце активного участка – 400 м/с Скорость носителя максимальная при стрельбе – до 30 узлов Время реакции комплекса – 8 с Волнение моря при стрельбе – до 3 баллов Температура эксплуатации – от -40 до +50 град.С
30мм автоматические установки типа АК-630
АК-630
АК-630 устройство
30-мм шестиствольная автоматическая корабельная артиллерийская установка, созданная под руководством В. П. Грязева и А. Г. Шипунова. В наименовании «6» означает 6 стволов, 30 — калибр. Является средством самообороны кораблей, может быть использована для поражения воздушных целей на наклонной дальности до 4000 м и лёгких надводных сил противника на дистанциях до 5000 м.
Огневые характеристики:
Калибр: 30 мм Патрон: 30×165 мм Длина ствола: 54 калибра Скорострельность: 4000-5000 выстр./мин
Длина очереди:
6 очередей по 400 выстрелов с перерывом 5 с 6 очередей по 200 выстрелов с перерывом 1с Масса патрона: 0,83 кг Начальная скорость снаряда: 1030 м/с Дальность стрельбы: 4000 м
Вертикальная плоскость: от −12 до +88 град Максимальная скорость поворота в вертикальной плоскости: 50 град/сек Горизонтальная плоскость: от +180 до −180 град Максимальная скорость поворота в горизонтальной плоскости: 70 град/сек
Другие характеристики:
Масса: 3800 кг
Система подачи боеприпаса: ленточное, непрерывное Боевой расчёт: 1 чел. Боезапас: основной — 2000 ед., запасной бункер — 1000 ед. (только у АК-630М)
Ракетный комплекс «Игла»
«Игла» (индекс ГРАУ — 9К38, по классификации МО США и НАТО — SA-18 Grouse (рус. Шотландская куропатка)) — российский/советский переносной зенитно-ракетный комплекс, предназначенный для поражения низколетящих воздушных целей на встречных и догонных курсах в условиях воздействия ложных тепловых помех. Комплекс принят на вооружение в 1983 году.
Средства связи, обнаружения и управления
Для навигационных задач, безопасности плавания во всем диапазоне скоростей хода «Зубp» оборудован интегрированной навигационной системой, гирокурсоуказателем ГКУ-2, магнитным компасом КМ-60-М2, радиодоплеровским дрейфолагом РДЛ-3-АП100, радиопеленгатором, центральной гироскопической системой «База», навигационной РЛС РС-1 и спутниковой навигационной аппаратурой.
Корабль может также производить прием, перевозку мин и постановку активных минных заграждений. Предусмотрена возможность приема и постановки 20-80 (в зависимости от типа) мин. На «Зубpе» установлен автоматизированный комплекс радиосвязи «Буран- 6», обеспечивающий связь с надводными кораблями и береговыми пунктами управления в KB, MB и ДМВ диапазонах в телефонном и телеграфном режимах.
Десант
Десантный отсек
Десантный корабль на воздушной подушке амфибийного типа проекта 12322 «Зубp» может принимать на борт с оборудованного или необорудованного берега боевую технику и личный состав передовых отрядов морских десантов, перевозить их морем, высаживать на необорудованное побережье и поддерживать десант огнем.
В десантном отсеке «Зубpа» можно разместить три средних танка типа Т-80Б (Т-72А, Т-64Б, Т-62) или 10 легких боевых бронированных машин (БТР-80, БТР-70 или БТР-60ПБ), или от 360 до 500 десантников.
Кроме того, корабль мог обеспечивать переброску морем до 8 боевых машин пехоты БМП-1 (БМП-2) или легких танков ПТ-76Б. Предусмотрен также вариант перевозки техники и 140 десантников.
Конструкция
Опытная эксплуатация головного корабля позволила выявить все недостатки и исправить их в последующих серийных кораблях проекта. На серийных МДК было усилено оборонительное вооружение (установлены две 30-мм установки АК-230 с РЛС управления огнём «Рысь») и улучшены условия обитаемости, а сам корпус корабля вместо клёпанного был выполнен сварным из сплава АМГ-61.
Грузовой отсек имеет сквозной проезд для техники и расположен у диаметральной плоскости. Служебные отсеки разнесены по бортам. На полном ходу десантные корабли «Джейран» управляются воздушными рулями, размещенными за движителями, а на малых скоростях — струйными рулями с отбором воздуха от осевых вентиляторов-нагнетателей. Маршевые движители представляют из себя четырёхлопастные винты регулируемого шага диаметром 3,5 метра.
Полное водоизмещение кораблей «Джейран» достигало 353 тонн, скорость полного хода — 50 узлов, дальность плавания — 300 миль, автономность — 5 суток. Главная энергетическая установка этого малого десантного корабля состояла из двух газотурбинных двигателей ДТ-4 общей мощностью 32000 л. с., приводящих в действие нагнетатели и четыре воздушных винта.
Конструкция и характеристики
«Сормович» имел длину 29,2 м, ширину 11,33 м и высоту 7,8 м. Водоизмещение судна составило: полное 37 т, порожнее 25,4 т. Средняя осадка в полном водоизмещении составляла всего 0,37 м. В качестве энергетической установки на судне использовали авиационный газотурбинный двигатель АИ-20К мощностью 1690 кВт (2000 э.л.с.). В качестве вспомогательного турбогенератора использовали газотурбинный двигатель АИ-8 с генератором ГС-24. Газотурбинный двигатель АИ-20К приводил во вращение 12-лопастный осевой вентилятор для нагнетания подушки и движители.
Была применена сопловая схема формирования ВП (воздушная завеса). Подушка имела длину 20,4 м, ширину 3,2 м и высоту гибкого ограждения 0,8 м. Площадь воздушной подушки была 208 м², давление воздушной подушки — 130 кг/м².
В качестве движетеля было использовано два четырехлопастных дюралевых реверсивных винта АВ-4, диаметром 2,6 м. Заявленную максимальную скорость СВП могло достичь 100 км/ч, хотя по воспоминаниям очевидцев на испытаниях «Сормович» достигал скорости 120-130 км/ч. Дальность плавания составила 600 км, а автономность хода — 8 часов. Судно имело экипаж 3 человека и могло брать на борт до 50 пассажиров. Пассажирский салон на 50 человек был размещён в носовой части судна.
Конструкция
Модель корабля
Вооружение корабля: видны ракетные установки МС-227
Привод нагнетателей воздушной подушки и воздушных винтов на корабле осуществляется от установки М35 суммарной мощностью 50 000 л. с. производства Государственного предприятия «Научно-производственный комплекс газотурбостроения „Зоря“ — „Машпроект“». Образованию воздушной подушки служат 4 нагнетательных агрегата НО-10 с осевым рабочим колесом диаметром 2,5 м. Создание тяги для движения судна осуществляется тремя 4-лопастными реверсивными винтами с принудительным управлением шага. Винты диаметром 5,5 м установлены в кольцевых насадках из полимерных композиционных материалов производства КТБ «Судокомпозит». На кораблях проекта 12322 имеются две электростанции, состоящие из двух газотурбогенераторов мощностью по 100 кВт каждая и главных распредщитов. Управление движением корабля и его техническими средствами происходит централизованно, дистанционно и с использованием элементов автоматизации. Оно осуществляется из главного командного пункта, центрального поста управления и выносных пультов.
Корпуса малых десантных кораблей выполнены цельносварными из высокопрочного коррозионностойкого алюминиево-магниевого сплава. Основная силовая несущая часть корпуса корабля, обеспечивающая прочность и непотопляемость судна, представляет собой понтон прямоугольной формы. Находящаяся на понтоне надстройка разделена двумя продольными переборками на 3 функциональных отсека. В средней части размещён отсек техники десанта с танковыми дорожками и аппарелями. В бортовых отсеках размещены главные и вспомогательные энергоустановки, помещения личного состава десантируемых групп, жилые помещения, системы обеспечения жизнедеятельности и защиты от ОМП (оружия массового поражения). Гибкое ограждение воздушной подушки предназначается для удержания воздушной подушки под корпусом корабля и для обеспечения требуемой высоты подъёма судна над опорной поверхностью (клиренс). Ограждение выполнено двухъярусным: с гибким ресивером и навесными элементами — с крестообразным секционированием воздушной подушки продольным и поперечным килями. Для поддержания комфортных условий на боевых постах, в помещениях десанта и жилых помещениях экипажа предусмотрены системы вентиляции, кондиционирования, отопления, теплозвукоизолирующие покрытия, конструкции из вибродемпфирующего материала, а также созданы нормальные условия отдыха и питания экипажа.
Судьба
К сожалению, опытная эксплуатация на пассажирских линиях СВП «Сормовича» продлилась всего две навигации. Конечно, на судьбу «Сормовича» никак не мог повлиять анекдотичный случай, описанный выше, проблема была полностью техническая. Из-за постоянных проблем, связанных с поломкой главного редуктора и других недоработок судно сняли с эксплуатации. По воспоминаниям В. А. Щербакова причиной снятия с эксплуатации судна послужил окончательный вывод из строя главного редуктора. Газотрубоход списали в 1974 году. «Сормович» встретил свой конец на базе ЦКБ по СПК в Чкаловске (Горьковская область), где пролежав некоторое время в калашном ряду, после того, как его привели в полное негодное состояние, он был разрезан на куски безжизненного металла.
С опорой на воздух
Идея поднять судно из воды в воздух, чтобы снизить сопротивление и повысить скорость, всегда была очень привлекательной для судостроителей. За сто лет до появления первых пароходов и за двести лет до первых полетов на самолетах уже существовал проект, который можно назвать прообразом современных кораблей на воздушных подушках. В 1716 году шведский ученый Эммануил Сведенборг предложил с помощью лопастей и мускульной силы нагнетать воздух под парусиновый купол, на котором можно перемещать людей и грузы. Идея осталась на бумаге, так как никакая мускульная сила не смогла бы поднять такой аппарат.
Воплотить что-то подобное в реальность стало возможным только с появлением двигателей внутреннего сгорания. В 1915 году австро-венгерский офицер и изобретатель Мюллер фон Томамюль построил экспериментальный торпедный катер с поддувом «Ферзухсгляйтбот», который смог разогнаться до 40 узлов (чуть более 70 км/ч). Но ускорять машины с помощью воздушной прослойки предлагали не только на воде. В 1926 году Константин Циолковский высказывал мысль о скоростном поезде без колес, движение которого основывалось бы на использовании давления воздуха.
Торпедный катер с поддувом «Ферзухсгляйтбот»
Наша страна была первой в создании действующих «воздухоходов» скегового типа. Работы над ними были начаты в 1927 году под руководством профессора В.И. Левкова. Судна на воздушной подушке (СВП) разрабатывались для военного применения. В конце 1930-х годов катер Левкова «Л-5» весом 9 тонн достиг скорости 73 узла (более 135 км/ч). Он был построен по скеговому типу конструкции.
Левков работал и над СВП камерного типа, но развития это направление не получило. Изобретателем соплового способа формирования воздушной подушки, который сегодня используется в большинстве СВП, считается англичанин Кристофер Коккерелл. По легенде, он открыл принцип воздушного барьера, экспериментируя с двумя консервными банками, вставленными одна в другую. В 1955 году Коккерелл запатентовал схему СВП под названием Hovercraft («парящий аппарат»). А в 1959-м первое построенное им судно SR-N1 пересекло пролив Ла-Манш за 20 минут.
Hovercraft SR-N1
«Золотой век» СВП пришелся на 1960-70-е годы, когда конструкторы и судостроители возлагали на новый тип судов большие надежды. Однако практическое применение показало, что СВП достаточно дороги в строительстве, эксплуатации и обслуживании. Повсеместного распространения, как о том мечтали изобретатели СВП, этот тип транспорта не получил. И все же есть сферы, где судам на воздушной подушке пока нет альтернативы, и их минусы с лихвой окупаются преимуществами.
Состав серии
В период с 1970 г. по 1985 г. на ПО «Алмаз» г. (Санкт-Петербург) было построено 20 МДКВП данного типа (1 корабль проекта 1232 и 19 кораблей проекта 12321). При этом МДК-66 в результате пожара в 1973 г. Поправка – Это было в 1983 году. получил сильные повреждения и был построен фактически заново, при этом первоначальные корпусные конструкции были разобраны на металл, а задел оборудования и механизмов использовался при постройке других кораблей серии. В настоящее время все МДКВП исключены из списков флота. Представители данной серии представлены в таблице.Цвета таблицы: Красный — Списан или утилизирован или потерян
Иллюстрация | |||||||
---|---|---|---|---|---|---|---|
ПО «Алмаз» |
БФ |
||||||
КФл |
|||||||
ЧФ |
|||||||
Принцип действия воздушной подушки
Подушка образуется в результате аккумуляции сжатого воздуха под дном корабля. Он поднимает катер над водой и сушей. Благодаря подаваемому воздуху снижается сила трения. Это позволяет аппарату беспрепятственно двигаться над поверхностями.
Существует несколько видов воздушной подушки:
- Вид, при котором воздушные потоки, собирающийся за счет воздушного винта, свободно обволакивает дно вокруг корабля. Сильные потоки воздуха заставляют выше парить катер.
- Скеговые катера оснащены узкими корпусами – скегами. Они экономят воздух. Такое судно может плыть исключительно над водой.
- Катера с сопловым видом передвигаются за счет аккумуляции воздуха из специальных сопел. Подушка ограждается струями воды, образующимися в соплах.
Также подушки разделяются по способу образования:
- Статическое устройство образуется с помощью внешнего вентилятора;
- Динамическая воздушная подушка – продукт повышенного давления в днище, которое образуется при движении катера над поверхностью.
Технические возможности
Технические характеристики катера достаточно обширные. Такие лодки подойдут и для активного отдыха, и для исследовательских экспедиций, и для участия в военных действиях.
- Высокая скорость при небольшом расходе топлива. При крейсерской скорости около 60 км/час расход топлива 20 литров.
- Катер может передвигаться практически по любой поверхности: вода, песок, болото, снег и даже по траве и асфальту.
- Средняя грузоподъёмность пассажирского катера составляет 1-1,5 тонны.
- Катера могут функционировать в любое время года и в любых погодных условиях, даже во время ледохода.
Десантный катер “Кальмар”
При таких характеристиках все же катер имеет ограничения использования. Во-первых, это судно не может преодолевать твердые преграды свыше 35 сантиметров. Например, столкновение с корягой или бревном будет стоить судоходному аппарату понижением давления в днище или повреждением гибкого ограждения судна. Во-вторых, катер не выдерживает высоких волн. Это затрудняет движение и даже может его потопить. В-третьих, проходимость по густым и высоким зарослям также может вызвать трудности передвижения.